
MPASM USER’S GUIDE with MPLINK and MPLIB

M PAS M USE R’ S GU ID E
w i t h M P L I N K a n d M P L I B

33014F_0Book.book : 33014F_T.frm Page 1 Thursday, October 9, 1997 9:02 AM
Information contained in this publication regarding device applications and the like is intended by way of suggestion
only. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with re-
spect to the accuracy or use of such information. Use of Microchip’s products as critical components in life support sys-
tems is not authorized except with express written approval by Microchip.

1997 Microchip Technology Incorporated. All rights reserved.

The Microchip logo, name, PIC, PICMASTER, PICSTART, PRO MATE, are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries. MPLAB and PICmicro are trademarks of Microchip
Technology in the U.S.A. and other countries.

CompuServe is a registered trademark of CompuServe Incorporated.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Windows and MS-DOS are registered trademarks of Microsoft Corporation.

All product/company trademarks mentioned herein are the property of their respective companies.
 1997 Microchip Technology Inc. DS33014F

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_T.frm Page 2 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_0BookTOC.fm Page iii Thursday, October 9, 1997 9:02 AM
 Table of Contents
Part 1 – MPASM
Preface

Welcome . 3

Feature List and Product Information . 3

Migration Path . 3

Chapter 1. Introduction
Product Definition . 5

Using MPASM . 5

Documentation Layout . 7

Terms . 8

Recommended Reading . 10

System Requirements . 10

Warranty Registration . 10

Installation . 10

Compatibility Issues . 10

Customer Support . 11

Chapter 2. Environment and Usage
Introduction . 13

Highlights . 13

Terms . 13

Command Line Interface . 14

DOS Shell Interface . 16

Windows Shell Interface . 17

Source Code Formats . 18

Files Used by MPASM and Utility Functions . 20

Hex File Formats . 20

Listing File Format . 21

Error File Format (.ERR) . 22

Chapter 3. Directive Language
Introduction . 23

Highlights . 23
 1997 Microchip Technology Inc. DS33014F - page iii

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_0BookTOC.fm Page iv Thursday, October 9, 1997 9:02 AM
Terms . 23

Directive Details . 26

_ _BADRAM – Identify Unimplemented RAM . 26

BANKISEL – Generate Indirect Bank Selecting Code 26

BANKSEL – Generate Bank Selecting Code . 27

CBLOCK – Define a Block of Constants . 28

CODE – Begin an Object File Code Section . 29

_ _CONFIG – Set Processor Configuration Bits . 29

CONSTANT – Declare Symbol Constant . 30

DATA – Create Numeric and Text Data . 30

DB – Declare Data of One Byte . 31

DE – Declare EEPROM Data Byte . 31

#DEFINE – Define a Text Substitution Label . 32

DT – Define Table . 32

DW – Declare Data of One Word . 33

ELSE – Begin Alternative Assembly Block to IF . 33

END – End Program Block . 34

ENDC – End an Automatic Constant Block . 34

ENDIF – End Conditional Assembly Block . 35

ENDM – End a Macro Definition . 35

ENDW – End a While Loop . 35

EQU – Define an Assembler Constant . 36

ERROR – Issue an Error Message . 36

ERRORLEVEL – Set Message Level . 37

EXITM – Exit from a Macro . 37

EXPAND – Expand Macro Listing . 38

EXTERN – Declare an Externally Defined Label . 38

FILL – Specify Memory Fill Value . 39

GLOBAL – Export a Label . 39

IDATA – Begin an Object File Initialized Data Section 40

_ _IDLOCS – Set Processor ID Locations . 41

IF – Begin Conditionally Assembled Code Block . 41

IFDEF – Execute If Symbol has Been Defined . 42

IFNDEF – Execute If Symbol has not Been Defined 42

INCLUDE – Include Additional Source File . 43

LIST – Listing Options . 44

LOCAL – Declare Local Macro Variable . 44

MACRO – Declare Macro Definition . 45
DS33014F - page iv  1997 Microchip Technology Inc.

 Table of Contents

33014F_0Book.book : 33014F_0BookTOC.fm Page v Thursday, October 9, 1997 9:02 AM
_ _MAXRAM – Define Maximum RAM Location . 46

MESSG – Create User Defined Message . 47

NOEXPAND – Turn off Macro Expansion . 47

NOLIST – Turn off Listing Output . 47

ORG – Set Program Origin . 48

PAGE – Insert Listing Page Eject . 48

PAGESEL – Generate Page Selecting Code . 48

PROCESSOR – Set Processor Type . 49

RADIX – Specify Default Radix . 49

RES – Reserve Memory . 50

SET – Define an Assembler Variable . 50

SPACE – Insert Blank Listing Lines . 51

SUBTITLE – Specify Program Subtitle . 51

TITLE – Specify Program Title . 51

UDATA – Begin an Object File Uninitialized Data Section 52

UDATA_OVR – Begin an Object File Overlayed Uninitialized Data Section . 52

UDATA_SHR – Begin an Object File Shared Uninitialized Data Section 53

#UNDEFINE – Delete a Substitution Label . 54

VARIABLE – Declare Symbol Variable . 54

WHILE – Perform Loop While Condition is True . 55

Chapter 4. Using MPASM to Create Relocatable Objects
Introduction . 57

Highlights . 57

Header Files . 57

Program Memory . 57

Instruction Operands . 58

RAM Allocation . 58

Configuration Bits and ID Locations . 60

Accessing Labels From Other Modules . 60

Paging and Banking Issues . 61

Unavailable Directives . 62

Generating the Object Module . 62

Example . 62

Chapter 5. Macro Language
Introduction . 65

Highlights . 65
 1997 Microchip Technology Inc. DS33014F - page v

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_0BookTOC.fm Page vi Thursday, October 9, 1997 9:02 AM
Terms . 65

Macro Syntax . 66

Macro Directives . 66

Text Substitution . 67

Macro Usage . 67

Examples . 68

Chapter 6. Expression Syntax and Operation
Introduction . 71

Highlights . 71

Terms . 71

Text Strings . 72

Numeric Constants and Radix . 74

High/Low . 76

Increment/Decrement . 76

Part 2 – MPLINK
Chapter 1. Introduction

MPLINK Preview . 79

Product Description . 79

File Formats . 80

Linker Components . 80

Tools and Supported Platforms . 81

Chapter 2. Usage
Command Line . 83

Usage Example . 84

Chapter 3. Command File
Directives . 85

Linker Command File Example: . 88

Chapter 4. Linker Map File
Linker Map File . 89

Chapter 5. Linker Processing
Linker Allocation Algorithm . 91

Relocation Example . 92

Initialized Data . 93
DS33014F - page vi  1997 Microchip Technology Inc.

 Table of Contents

33014F_0Book.book : 33014F_0BookTOC.fm Page vii Thursday, October 9, 1997 9:02 AM
Chapter 6. Terminology
Terminology . 95

Part 3 – MPLIB
Chapter 1. Librarian Fundamentals

Usage . 99

Usage Examples . 100

Tips . 100

Error Reporting . 100

Appendices
Appendix A. Hex File Formats

Introduction . 101

Highlights . 101

Hex File Formats . 101

Appendix B. On-Line Support
Introduction . 105

Connecting to the Microchip Internet Web Site . 105

Connecting to the Microchip BBS . 106

Using the Bulletin Board . 106

Software Releases . 107

Systems Information and Upgrade Hot Line . 108

Appendix C. MPASM Errors/Warnings/Messages
Errors . 109

Warnings . 113

Messages . 116

Appendix D. MPLINK Errors/Warnings
Parse Errors . 119

Linker Errors . 120

Library File Errors . 122

COFF File Errors . 123

COFF To COD Converter Errors . 124

COFF To COD Converter Warnings . 124
 1997 Microchip Technology Inc. DS33014F - page vii

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_0BookTOC.fm Page viii Thursday, October 9, 1997 9:02 AM
Appendix E. Quick Reference
Key to PICmicro Family Instruction Sets . 131

PIC16C5X Instruction Set . 131

PIC16CXX Instruction Set . 133

PIC17CXX Instruction Set . 136

Hexadecimal to Decimal Conversion . 139

ASCII Character Set . 140

Appendix F. Example Initialization Code
Initialization Code . 141

Initialization Code for the PIC16CXX . 141

Initialization Code for the PIC17CXX . 147
Index

Index . 153
DS33014F - page viii  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014Ft.frm Page 1 Thursday, October 9, 1997 9:02 AM
Part 1 – MPASM
 M
P

A
S

M

Preface . 3

Chapter 1. Introduction . 5

Chapter 2. Environment and Usage . 13

Chapter 3. Directive Language . 23

Chapter 4. Using MPASM to Create Relocatable Objects 57

Chapter 5. Macro Language . 65

Chapter 6. Expression Syntax and Operation. 71
 1997 Microchip Technology Inc. DS33014F - page 1

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014Ft.frm Page 2 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 2  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_0.frm Page 3 Thursday, October 9, 1997 9:02 AM
Preface
Welcome
Microchip Technology Incorporated is committed to providing useful and
innovative solutions to your microcontroller designs. MPASM is the first
Universal Assembler available for Microchip’s entire product line of
microcontrollers. MPASM will generate solid code with a directive
language rich in potential.

Feature List and Product Information
MPASM provides a universal solution for developing assembly code for all of
Microchip’s 12-, 14-, and 16-bit core PICmicro™ MCUs. Notable features
include:

• All PICmicro MCU Instruction Sets

• Command Line Interface

• Command Shell Interfaces

• Rich Directive Language

• Flexible Macro Language

• MPLAB Compatibility

Use of the Microchip MPASM Universal Assembler requires an IBM PC/AT
or compatible computer, running MS-DOS V5.0 or greater.

Migration Path
Since MPASM is a universal assembler for all PICmicro devices, an
application developed for the PIC16C54 can be easily translated into a
program for the PIC16C71. This would require changing the instruction
mnemonics that are not the same between the machines (assuming that
register and peripheral usage were similar). The rest of the directive and
macro language will be the same.
 1997 Microchip Technology Inc. DS33014F - page 3

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_0.frm Page 4 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 4  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014F_1.frm Page 5 Thursday, October 9, 1997 9:02 AM
Chapter 1. Introduction
 M
P

A
S

M

Product Definition
MPASM is a DOS or Windows-based PC application that provides a platform
for developing assembly language code for Microchip’s 12-, 14-, and 16-bit
microcontroller families. Generically, MPASM will refer to the entire
development platform including the macro assembler and utility functions.

Using MPASM
MPASM can be used in two ways:

• To generate absolute code that can be executed directly by a
microcontroller.

• To generate object code that can be linked with other separately
assembled or compiled modules.

Absolute code is the default output from MPASM. When a source file is
assembled in this manner, all values used in the source file must be defined
within that source file, or in files that have been explicitly included. If
assembly proceeds without errors, a HEX file will be generated, containing
the executable machine code for the target device. This file can then be used
in conjunction with a device programmer to program the microcontroller.

This process is shown below.

Figure 1.1 Generating Absolute Code

MPASM also has the ability to generate an object module that can be linked
with other modules using Microchip’s MPLINK linker to form the final
executable code. This method is very useful for creating reusable modules
that do not have to be retested each time they are used. Related modules
can also be grouped and stored together in a library using Microchip’s MPLIB
Librarian. Required libraries can be specified at link time, and only the
routines that are needed will be included in the final executable.

A visual representation of this process follows.
 1997 Microchip Technology Inc. DS33014F - page 5

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_1.frm Page 6 Thursday, October 9, 1997 9:02 AM
Figure 1.2 Creating a Reusable Object Library

Figure 1.3 Generating Executable Code From Object Modules

Refer to Chapter 4, “Using MPASM to Create Relocatable Objects” for more
information on the differences between absolute and object assembly.
DS33014F - page 6  1997 Microchip Technology Inc.

Chapter 1.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_1.frm Page 7 Thursday, October 9, 1997 9:02 AM
Documentation Layout
The documentation is intended to describe how to use the assembler and its
environment. It also provides some basic information about specific Microchip
microcontrollers and their instruction sets, but detailed discussion of these
issues is deferred to the data sheets for specific microcontrollers.

Part 1 - MPASM

Chapter 1: Introduction – Introduces the user to MPASM. It describes the
User’s Guide layout, general conventions and terms, as well as a brief
discussion of installation and platform requirements.

Chapter 2: Environment and Usage – This chapter describes the
assembler’s command line interface and shell interface. Also discussed here
are the files used by MPASM, both input and output, including object file
formats.

Chapter 3: Directive Language – This chapter describes the native directive
language of MPASM.

Chapter 4: Using MPASM to Create Relocatable Objects – Information on
the differences between absolute and object assembly.

Chapter 5: Macro Language – This chapter describes the macro language
of MPASM. Macros are best learned by example; several will be offered for
consideration.

Chapter 6: Expression Syntax and Operation – This chapter describes the
expression syntax of MPASM, including operator precedence, radix override
notation, examples and discussion.

Part 2 - MPLINK

Chapter 1: Introduction

Chapter 2: Usage

Chapter 3: Command File

Chapter 4: Linker Map File

Chapter 5: Linker Processing

Chapter 6: Terminology

Part 3 - MPLIB

Chapter 1: Librarian Fundamentals

Appendix A: Hex File Formats – A brief reference.

Appendix B: On Line Support - Information on Microchip’s electronic
support services.

Appendix C: MPASM Errors/Warnings/Messages – A list of the error
messages generated by MPASM, with descriptions.

Appendix D: MPLINK Errors/Warnings
 1997 Microchip Technology Inc. DS33014F - page 7

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_1.frm Page 8 Thursday, October 9, 1997 9:02 AM
Appendix E: Quick Reference – A concise listing of all instructions for the
MPASM Assembler.

Appendix F: Example Initialization Code

Index: A keyword cross reference to important topics and keywords.

Table 1.1 Documentation Conventions

Terms
In order to provide a common frame of reference, the following terms are
defined:

Assemble
The act of executing the MPASM macro assembler to translate source code
to machine code.

Directives
Directives provide control of the assembler’s operation by telling MPASM how
to treat mnemonics, define data, and format the listing file. Directives make
coding easier and provide custom output according to specific needs.

Hex File
This file contains the actual machine code that can be programmed into a
microcontroller or memory device. It is in a format that is readable by a device
programmer.

Library
A library is a collection of relocatable object modules. It is created by
assembling multiple source files to object files, and then using the librarian to
combine the object files into one library file. A library can be linked with object
modules and other libraries to create executable code. Libraries are created
and manipulated with Microchip’s librarian, MPLIB.

Character Represents

Square Brackets ([]) Optional Arguments

Angle Brackets (< >) Delimiters for special keys: <TAB>, <ESC>, or
additional options.

Pipe Character (|) Choice of mutually exclusive arguments; an OR
selection.

Lowercase characters Type of data

Courier Font User entered code or sample code.
DS33014F - page 8  1997 Microchip Technology Inc.

Chapter 1.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_1.frm Page 9 Thursday, October 9, 1997 9:02 AM
Link
Linking is the process of combining object files and libraries to create
executable code. Linking is performed by Microchip’s linker, MPLINK.

Listing File
A listing file is an ASCII text file that shows the machine code generated for
each assembly instruction, MPASM directive, or macro encountered in a
source file.

Macro
A macro consists of a sequence of assembler commands. Passing arguments
to a macro allows for flexible functionality. Macros are a form of “short hand”
notation that will be expanded by MPASM.

Mnemonics
These are instructions that are translated directly into machine code. These
are used to perform arithmetic and logical operations on data residing in
program or data memory of a microcontroller. They also have the ability to
move data in and out of registers and memory as well as change the flow of
program execution. Also referred to as Opcodes.

Object File
An object file can be created to provide the user with a relocatable module
that can be linked with other modules. Special directives are required in the
source code when generating an object file.

PC
Any IBM or compatible Personal Computer.

PICmicro
PICmicro refers to any Microchip microcontroller, including the
representatives of the PIC12CXXX, PIC14XXX, PIC16C5X, PIC16CXX, and
PIC17CXX families.

Source Code
This is the ASCII text file of PICmicro instructions and MPASM directives and
macros that will be translated into machine code. This code is suitable for use
by a PICmicro or Microchip development system product like MPLAB™. It is
an ASCII file that can be created using any ASCII text editor.
 1997 Microchip Technology Inc. DS33014F - page 9

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_1.frm Page 10 Thursday, October 9, 1997 9:02 AM
Recommended Reading
This manual is intended to provide a reference to using the MPASM
development environment. It is not intended to replace reference material
regarding specific PICmicro MCUs. Therefore, you are urged to read the Data
Sheets for the PICmicro MCU specified by your application.

If this is your first microcontroller application, you are encouraged to review
the Microchip “Embedded Control Handbook.” You will find a wealth of
information about applying PICmicro MCUs. The application notes described
within are available from the Microchip BBS and Internet web site (see
Appendix B).

All of these documents are available from your local sales office or from your
Microchip Field Application Engineer (FAE).

System Requirements
MPASM will run on any PC/AT or compatible computer, running DOS v5.0 or
greater. MPASM for Windows requires Windows 3.1 or greater.

No special display or ancillary devices are required.

Warranty Registration

Installation
MPASM for Windows is installed through the MPLAB installation procedure.
For details, refer to the MPLAB User’s Guide.

Compatibility Issues
MPASM is compatible with all Microchip development systems currently
in production. This includes MPLAB-SIM (PICmicro MCU discrete-event
simulator), MPLAB PICMASTER® (PICmicro MCU Universal In-Circuit
Emulator), PRO MATE® (the Microchip Universal Programmer), and
PICSTART®Plus (the Microchip low-cost development programmer).

MPASM supports a clean and consistent method of specifying radix (see
Chapter 5). You are encouraged to develop new code using the methods
described within this document, even though certain older syntaxes may be
supported for compatibility reasons.

Note: Upon receiving the diskette you should complete and return the
Warranty Registration Card enclosed with the disk, and mail it
promptly. Doing so will help to ensure that you receive product
updates and notification of interim releases that become available.
DS33014F - page 10  1997 Microchip Technology Inc.

Chapter 1.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_1.frm Page 11 Thursday, October 9, 1997 9:02 AM
Customer Support
Microchip endeavors at all times to provide the best service and
responsiveness possible to its customers. Technical support questions should
first be directed to your distributor and representative, local sales office, Field
Application Engineer (FAE), or Corporate Applications Engineer (CAE).

The Microchip Internet Home Page can provide you with technical
information, application notes and promotional news on Microchip products
and technology. The Microchip Web address is http://www.microchip.com.

You can also check with the Microchip BBS (Bulletin Board System) for
non-urgent support, customer forums, and the latest revisions of
Microchip systems development products. Refer to Appendix B for access
information.
 1997 Microchip Technology Inc. DS33014F - page 11

MPASM USER’S GUIDE with MPLINK and MPLIB

DS33014F - page 12  1997 Microchip Technology Inc.

Notes:

33014F_0Book.book : 33014F_1.frm Page 12 Thursday, October 9, 1997 9:02 AM

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014F_2.frm Page 13 Thursday, October 9, 1997 9:02 AM
Chapter 2. Environment and Usage
 M
P

A
S

M

Introduction
MPASM provides a universal platform for developing code for PICmicro
MCUs. This chapter is dedicated to describing the MPASM command line
interface and the MPASM shells.

Highlights
The points that will be highlighted in this chapter are:

• MPASM Command Line Interface

• MPASM Shell Interfaces

• MPASM Input Files

• MPASM Output Files

Terms

Alpha Character
Alpha characters are those characters, regardless of case, that are normally
contained in the alphabet: (a, b, ..., z, A, B, ..., Z).

Alpha Numeric
Alpha numeric characters include alpha characters and numbers: (0,1, ..., 9).

Command Line Interface
Command Line Interface refers to executing a program with options.
Executing MPASM with any command line options or just the file name will
invoke the assembler. In the absence of any command line options, a
prompted input interface (shell) will be executed.

Shell
The MPASM shell is a prompted input interface to the macro assembler.
There are two MPASM shells, one for the DOS version and one for the
Windows version.
 1997 Microchip Technology Inc. DS33014F - page 13

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_2.frm Page 14 Thursday, October 9, 1997 9:02 AM
Command Line Interface
MPASM can be invoked through the command line interface as follows:

MPASM [/<Option>[,/<Option>...]] [<file_name>]

or

MPASMWIN [/<Option>[,/<Option>...]] [<filename>]

Where

/<Option> - refers to one of the command line options

<file_name> - is the file being assembled

For example, if test.asm exists in the current directory, it can be assembled
with following command:

MPASM /e /l test

The assembler defaults (noted in Table) can be overridden with options:

If the filename is omitted, the appropriate shell interface is invoked.

• /<option> enables the option
• /<option>+ enables the option
• /<option>- disables the option
• /<option><filename> if appropriate, enables the option and

directs the output to the specified file

Table 2.1 Assembler Command Line Options

Option Default Description

? N/A Displays the MPASM Help Panel

a INHX8M Set hex file format:
/a<hex-format>
where <hex-format> is one of [INHX8M |
INHX8S | INHX32]

c On Enable/Disable case sensitivity

d None Define symbol:
/dDebug /dMax=5 /dString=”abc”

e On Enable/Disable/Set Path for error file.

h N/A Displays the MPASM Help Panel

l On Enable/Disable/Set Path for the listing file.

m On Enable/Disable macro expansion

o Off Enable/Disable/Set Path for the object file.
DS33014F - page 14  1997 Microchip Technology Inc.

Chapter 2.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_2.frm Page 15 Thursday, October 9, 1997 9:02 AM
p None Set the processor type:
/p<processor_type>
where <processor_type> is a PICmicro device;
for example, PIC16C54.

q Off Enable/Disable quiet mode (suppress screen output)

r Hex Defines default radix:
/r<radix>
where <radix> is one of [HEX | DEC | OCT]

t 8 List file tab size: /t<size>

w 0 Set message level:
/w<level>
where <level> is one of [0|1|2]
0 – all messages
1 – errors and warnings
2 – errors only

x Off Enable/Disable/Set Path for cross reference file.

Table 2.1 Assembler Command Line Options (Continued)
 1997 Microchip Technology Inc. DS33014F - page 15

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_2.frm Page 16 Thursday, October 9, 1997 9:02 AM
DOS Shell Interface
The MPASM DOS Shell interface displays a screen in Text Graphics mode.
On this screen, you can fill in the name of the source file you want to
assemble and other information.

Source File
Type the name of your source file. The name can include a DOS path
and wild cards. If you use wild cards (one of * or ?), a list of all matching
files is displayed for you to select from. To automatically enter *.ASM in this
field, press <TAB>.

Processor Type
If you do not specify the processor in your source file, use this field to select
the processor. Enter the field by using the arrow keys, then toggle through the
processors by pressing <RET>.

Error File
An error file (<sourcename>.ERR) is created by default. To turn the error file
off, use the <↓> to move to the YES and press <RET> to change it to NO. The
error file name can be changed by pressing the <TAB> key to move to the
shaded area and typing a new name. Wild cards are not allowed.

Cross Reference File
Modify this field as for the Error File. It is used to optionally create a cross
reference file (<sourcename>.XRF). The name may be modified as for error
file and again, wild cards are not allowed.
DS33014F - page 16  1997 Microchip Technology Inc.

Chapter 2.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_2.frm Page 17 Thursday, October 9, 1997 9:02 AM
Listing File
Modify this field the same as for the error file. It is used to optionally disable
the listing file. The output file name may be modified as for the error file.

HEX Dump Type
Set this value to generate the desired hex file format. Changing this value is
accomplished by moving to the field with the <↓> key and pressing the <RET>
key to scroll through the available options. To change the hex file name, press
the <TAB> key to move the shaded area, and type in the new name.

Assemble to Object File
Enabling this option will generate the relocatable object code that can be input
to the linker and suppress generation of the hex file. The file name may be
modified in the same manner as the error file.

Windows Shell Interface
MPASM for Windows provides an interface window which can set various
options. It is invoked by executing MPASMWIN.EXE while in Windows.
 1997 Microchip Technology Inc. DS33014F - page 17

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_2.frm Page 18 Thursday, October 9, 1997 9:02 AM
Select a source file by typing in the name or using the Browse button. Set the
various options as described below. Then click Assemble to assemble the
source file.

Source Code Formats
The source code file may be created using any ASCII text file editor. It should
conform to the following basic guidelines.

Each line of the source file may contain up to four types of information:

• labels

• mnemonics

• operands

• comments

The order and position of these are important. Labels must start in column
one. Mnemonics may start in column two or beyond. Operands follow the
mnemonic. Comments may follow the operands, mnemonics or labels, and
can start in any column. The maximum column width is 255 characters.

One or more spaces must separate the label and the mnemonic, and the
mnemonic and the operand(s). Multiple operands must be separated by a
comma. For example:

Option Usage

Radix Override any source file radix settings.

Warning Level Override any source file message level settings.

Hex Output Override any source file hex file format settings.

Generated Files Enable/disable various output files.

Case Sensitivity Enable/disable case sensitivity.

Macro Expansion Override any source file macro expansion
settings.

Processor Override any source file processor settings.

Tab Size Set the list file tab size.

Extra Options Any additional command line options. See
Chapter 2, “Command Line Interface”.

Save Settings on Exit Save these settings in MPLAB.INI.

When MPASM for
Windows is invoked
through MPLAB,
the options screen
is not available.
Refer to the Make
Setup option in the
MPLAB User’s
Guide for selecting
assembly options in
MPLAB.
DS33014F - page 18  1997 Microchip Technology Inc.

Chapter 2.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_2.frm Page 19 Thursday, October 9, 1997 9:02 AM
Example 2.2 Sample MPASM Source Code

Labels
A label must start in column 1. It may be followed by a colon (:), space, tab or
the end of line.

Labels must begin with an alpha character or an under bar (_) and may
contain alpha numeric characters, the under bar and the question mark.

Labels may be up to 32 characters long. By default they are case sensitive,
but case sensitivity may be overridden by a command line option. If a colon is
used when defining a label, it is treated as a label operator and not part of the
label itself.

Mnemonics
Assembler instruction mnemonics, assembler directives and macro calls must
begin in column 2 or greater. If there is a label on the same line, instructions
must be separated from that label by a colon or by one or more spaces or
tabs.

Operands
Operands must be separated from mnemonics by one or more spaces or
tabs. Multiple operands must be separated by commas.

Comments
MPASM treats anything after a semicolon as a comment. All characters
following the semicolon are ignored. String constants containing a semicolon
are allowed and are not confused with comments.

;
; Sample MPASM Source Code. For illustration only.
;
 list p=16c54
 Dest equ H’0B’

 org H’01FF’
 goto Start

 org H’0000’

 Start movlw H’0A’
 movwf Dest
 goto Start

 end
 —
 1997 Microchip Technology Inc. DS33014F - page 19

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_2.frm Page 20 Thursday, October 9, 1997 9:02 AM
Files Used by MPASM and Utility Functions
These are the default file extensions used by MPASM and the associated
utility functions.

Table 2.3 MPAM Default Extensions

Hex File Formats
MPASM is capable of producing different hex file formats. See Appendix A,
“Hex File Formats”.

Extension Purpose

.ASM Default source file extension input to MPASM:
<source_name>.ASM

.LST Default output extension for listing files generated from
MPASM:
 <source_name>.LST

.ERR Output extension from MPASM for specific error files:
<source_name>.ERR

.HEX Output extension from MPAS for hex files (see Appendix A):
 <source_name).HEX

.HXL/.HXH Output extensions from MPASM for separate low byte and
high byte hex files:
<source_name>.HXL, <source_name>.HXH

.COD Output extension for the symbol and debug file. This file may
be output from MPASM or MPLINK:
<source_name>.COD

.O Output extension from MPASM for object files:
<source_name>.O
DS33014F - page 20  1997 Microchip Technology Inc.

Chapter 2.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_2.frm Page 21 Thursday, October 9, 1997 9:02 AM
Listing File Format
Example 2.4 Sample MPASM Listing File (.LST)

MPASM 01.99.21 Intermediate MANUAL.ASM 5-30-1997 15:31:05 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

00001 ;
00002 ; Sample MPASM Source Code. For illustration only.
00003 ;
00004 list p=16c54

0000000B 00005 Dest equ H’0B’
00006

01FF 00007 org H’01FF’
01FF 0A00 00008 goto Start

00009
0000 00010 org H’0000’
 00011
0000 0C0A 00012 Start movlw H’0A’
0001 002B 00013 movwf Dest
0002 0A00 00014 goto Start

00015
 00016 end

MPASM 01.99.21 Intermediate MANUAL.ASM 5-30-1997 15:31:05 PAGE 2

SYMBOL TABLE
 LABEL VALUE

Dest 0000000B
Start 00000000
__16C54 00000001

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXX------------- ---------------- ---------------- ----------------
01C0 : ---------------- ---------------- ---------------- ---------------X

All other memory blocks unused.

Program Memory Words Used: 4
Program Memory Words Free: 508

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed
 1997 Microchip Technology Inc. DS33014F - page 21

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_2.frm Page 22 Thursday, October 9, 1997 9:02 AM
The listing file format produced by MPASM is straight forward:

The product name and version, the assembly date and time, and the page
number appear at the top of every page.

The first column of numbers, four characters wide, contains the base address
in memory where the code will be placed. The second column, indented two
spaces, displays the 32-bit value of any symbols created with the SET, EQU,
VARIABLE, CONSTANT, or CBLOCK directives. The third column, also four
characters wide, is reserved for the machine instruction. This is the code that
will be executed by the PICmicro MCU. The fourth column lists the associated
source file line number for this line. The remainder of the line is reserved for
the source code line that generated the machine code.

Errors, warnings, and messages are embedded between the source lines,
and pertain to the following source line.

The symbol table lists all symbols defined in the program. The memory usage
map gives a graphical representation of memory usage. ‘X’ marks a used
location and ‘-’ marks memory that is not used by this object. The memory
map is not printed if an object file is generated.

Error File Format (.ERR)
MPASM by default generates an error file. This file can be useful when
debugging your code. The MPLAB Source Level Debugger will automatically
open this file in the case of an error. The format of the messages in the error
file is:

<type>[<number>] <file> <line> <description>

For example:

Error[113] C:\PROG.ASM 7 : Symbol not previously defined (start)

Appendix C describes the error messages generated by MPASM.
DS33014F - page 22  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014F_3.frm Page 23 Thursday, October 9, 1997 9:02 AM
Chapter 3. Directive Language
 M
P

A
S

M

Introduction
This chapter describes the MPASM directive language.

Directives are assembler commands that appear in the source code but are
not translated directly into opcodes. They are used to control the assembler:
its input, output, and data allocation.

Many of the assembler directives have alternate names and formats. These
may exist to provide backward compatibility with previous assemblers from
Microchip and to be compatible with individual programming practices. If
portable code is desired, it is recommended that programs be written using
the specifications contained within this document.

Highlights
There are four basic types of directives provided by MPASM:

• Control Directives

• Data Directives

• Listing Directives

• Macro Directives

• Object File Directives

Terms
Control Directives
Control directives permit sections of conditionally assembled code.

Data Directives
Data Directives are those that control the allocation of memory and provide a
way to refer to data items symbolically, that is, by meaningful names.

Listing Directives
Listing Directives are those directives that control the MPASM listing file
format. They allow the specification of titles, pagination and other listing
control.

Macro Directives
These directives control the execution and data allocation within macro body
definitions.

Object File Directives
These directives are used only when creating an object file.
 1997 Microchip Technology Inc. DS33014F - page 23

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 24 Thursday, October 9, 1997 9:02 AM
Table 3.1 Directive Summary

Directive Description Syntax

_ _BADRAM Specify invalid RAM locations _ _badram <expr>

BANKISEL Genrate RAM bank selecting code for
indirect addressing

bankisel <label>

BANKSEL Generate RAM bank selecting code banksel <label>

CBLOCK Define a Block of Constants cblock [<expr>]

CODE Begins executable code section [<name>] code [<address>]

_ _CONFIG Specify configuration bits _ _config <expr>

CONSTANT Declare Symbol Constant constant <label>[=<expr>,...,<label>[=<expr>]]

DATA Create Numeric and Text Data [<label>] data <expr>,[,<expr>,...,<expr>]
[<label>] data “<text_string>”[,”<text_string>”,...]

DB Declare Data of One Byte [<label>] db <expr>[,<expr>,...,<expr>]
[<label>] db “<text_string>”[,”<text_string>”,...]

DE Define EEPROM Data [<label>] de <expr>[,<expr>,...,<expr>]
[<label>] de “<text_string>”[,”<text_string>”,...]

#DEFINE Define a Text Substitution Label define <name> [<value>]
define <name> [<arg>,...,<arg>] <value>

DT Define Table [<label>] dt <expr>[,<expr>,...,<expr>]
[<label>] dt “<text_string>”[,”<text_string>”,...]

DW Declare Data of One Wordd [<label>] dw <expr>[,<expr>,...,<expr>]
[<label>] dw “<text_string>”[,”<text_string>”,...]

ELSE Begin Alternative Assembly Block to IF else

END End Program Block end

ENDC End an Automatic Constant Block endc

ENDIF End conditional Assembly Block endif

ENDM End a Macro Definition endm

ENDW End a While Loop endw

EQU Define an Assembly Constant <label> equ <expr>

ERROR Issue an Error Message error “<text_string>”

ERRORLEVEL Set Error Level errorlevel 0|1|2| <+|-><message number>

EXITM Exit from a Macro exitm

EXPAND Expand Macro Listing expand

EXTERN Declares an external label extern <label>[,<label>]

FILL Fill Memory [<label>] fill <expr>, <count>

GLOBAL Exports a defined label global <label>[,<label>]
DS33014F - page 24  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 25 Thursday, October 9, 1997 9:02 AM
 1997 Microchip Technology Inc. DS33014F - page 25

IDATA Begins initialized data section [<name>] idata [<address>]

_ _IDLOCS Specify ID locations _ _idlocs <expr>

IF Begin ConditionallyAssembled Code
Block

if <expr>

IFDEF Execute If Symbol has Been Defined ifdef <label>

IFNDEF Execute If Symbol has not Been
Defined

ifndef <label>

#INCLUDE Include Additional Source File include <<include_file>> |“<include_file>”

LIST Listing Options list [<list_option>,...,<list_option>]

LOCAL Declare Local Macro Variable local <label>[,<label>]

MACRO Declare Macro Definition <label> macro [<arg>,...,<arg>]

_ _MAXRAM Specify maximum RAM address _ _maxram <expr>

MESSG Create User Defined Message messg “<message_text>”

NOEXPAND Turn off Macro Expansion noexpand

NOLIST Turn off Listing Output nolist

ORG Set Program Origin <label> org <expr>

PAGE Insert Listing Page Eject page

PAGESEL Generate ROM page selecting code pagesel <label>

PROCESSOR Set Processor Type processor <processsor_type>

RADIX Specify Default Radix radix <default_radix>

RES Reserve Memory [<label>] res <mem_units>

SET Define an Assembler Variable <label> set <expr>

SPACE Insert Blank Listing Lines space <expr>

SUBTITLE Specify Program Subtitle subtitle “<sub_text>”

TITLE Specify Program Title title “<title_text>”

UDATA Begins uninitialized data section [<name>] udata [<address>]

UDATA_OVR Begins overlayed uninitialized data
section

[<name>] udata_ovr [<address>]

UDATA_SHR Begins shared uninitialized data
section

[<name>] udata_shr [<address>]

#UNDEFINE Delete a Substitution Label #undefine <label>

VARIABLE Declare Symbol Variable variable <label>[=<expr>,...,<label>[=<expr>]]

WHILE Perform Loop While Condition is True while <expr>

Table 3.1 Directive Summary (Continued)

Directive Description Syntax

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 26 Thursday, October 9, 1997 9:02 AM
Directive Details
The remainder of this chapter is dedicated to providing a detailed description
of the directives supported by MPASM. Each definition will show:

• Syntax

• Description

• Example

_ _BADRAM – Identify Unimplemented RAM

Syntax
_ _badram <expr>[-<expr>][, <expr>[-<expr>]]

Description
The _ _MAXRAM and _ _BADRAM directives together flag accesses to
unimplemented registers. _ _BADRAM defines the locations of invalid RAM
addresses. This directive is designed for use with the _ _MAXRAM directive.
A _ _MAXRAM directive must preceed any _ _BADRAM directive. Each
<expr> must be less than or equal to the value specified by _ _MAXRAM.
Once the
_ _MAXRAM directive is used, strict RAM address checking is enabled, using
the RAM map specified by _ _BADRAM.

Example
See the example for _ _MAXRAM.

See Also
_ _MAXRAM

BANKISEL – Generate Indirect Bank Selecting Code

Syntax
 bankisel <label>

Description
For use when generating an object file. This directive is an instruction to the
linker to generate the appropriate bank selecting code for an indirect access
of the address specified by <label>. Only one <label> should be
specified. No operations can be performed on <label>. <label>must have
been previously defined.
DS33014F - page 26  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 27 Thursday, October 9, 1997 9:02 AM
The linker will generate the appropriate bank selecting code. For 14-bit core
devices, the appropriate bit set/clear instruction on the IRP bit in the STATUS
register will be generated. For the 16-bit core devices, MOVLB or MOVLR will
be generated. If the user can completely specify the indirect address without
these instructions, no code will be generated.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
 movlw Var1

 movwf FSR

 bankisel Var1

 ...

 movwf INDF

See Also
PAGESEL BANKSEL

BANKSEL – Generate Bank Selecting Code

Syntax
 banksel <label>

Description
For use when generating an object file. This directive is an instruction to the
linker to generate bank selecting code to set the bank to the bank containing
the designated <label>. Only one <label> should be specified. No
operations can be performed on <label>. <label> must have been
previously defined.

The linker will generate the appropriate bank selecting code. For 12-bit core
devices, the appropriate bit set/clear instructions on the FSR will be
generated. For 14-bit devices, bit set/clear instructions on the STATUS
register will be generated. For the 16-bit core devices, MOVLB or MOVLR will
be generated. If the device contains only one bank of RAM, no instructions
will be generated.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
 banksel Var1

 movwf Var1
 1997 Microchip Technology Inc. DS33014F - page 27

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 28 Thursday, October 9, 1997 9:02 AM
See Also
PAGESEL BANKISEL

CBLOCK – Define a Block of Constants

Syntax
cblock [<expr>]

 <label>[:<increment>][,<label>[:<increment>]]

endc

Description
Define a list of named constants. Each <label> is assigned a value of one
higher than the previous <label>. The purpose of this directive is to assign
address offsets to many labels. The list of names end when an ENDC
directive is encountered.

<expr> indicates the starting value for the first name in the block. If no
expression is found, the first name will receive a value one higher than the
final name in the previous CBLOCK. If the first CBLOCK in the source file has
no <expr>, assigned values start with zero.

If <increment> is specified, then the next <label> is assigned the value of
<increment> higher than the previous <label>.

Multiple names may be given on a line, separated by commas.

Example
cblock 0x20 ; name_1 will be

; assigned 20

name_1, name_2 ; name_2, 21 and so on

name_3, name_4 ; name_4 is assigned 23.

endc

cblock 0x30

TwoByteVar: 0, TwoByteHigh, TwoByteLow

Queue: QUEUE-SIZE

QueueHeadm QueueTail

Double1:2, Double2:2

endc
DS33014F - page 28  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 29 Thursday, October 9, 1997 9:02 AM
See Also
ENDC

CODE – Begin an Object File Code Section

Syntax
[<label>] code [<ROM address>]

Description
For use when generating an object file. Declares the beginning of a section of
program code. If <label> is not specified, the section is named .code. The
starting address is initialized to the specified address or zero if no address is
specified.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
RESET code H’01FF’

 goto START

See Also
IDATA UDATA UDATA_OVR UDATA_SHR EXTERN GLOBAL

_ _CONFIG – Set Processor Configuration Bits

Syntax
_ _config <expr>

Description
Sets the processor’s configuration bits to the value described by <expr>.
Refer to the PICmicro Microcontroller Data Book for a description of the
configuration bits for each processor.

Before this directive is used, the processor must be declared through the
command line, the LIST directive, or the PROCESSOR directive. If this
directive is used with the PIC17CXX family, the hex file output format must be
set to INHX32 through the command line or the LIST directive.

Example
list p=17c42,f=INHX32

_ _config H’FFFF’ ; Default configuration bits
 1997 Microchip Technology Inc. DS33014F - page 29

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 30 Thursday, October 9, 1997 9:02 AM
See Also
LIST PROCESSOR _ _IDLOCS

CONSTANT – Declare Symbol Constant

Syntax
constant <label>=<expr> [...,<label>=<expr>]

Description
Creates symbols for use in MPASM expressions. Contants may not be reset
after having once been initialized, and the expression must be fully resolvable
at the time of the assignment. This is the principal difference between
symbols declared as CONSTANT and those declared as VARIABLE, or created
by the SET directive. Otherwise, constants and variables may be used
interchangeably in expressions.

Example
variable RecLength=64 ; Set Default

; RecLength
constant BufLength=512 ; Init BufLength

. ; RecLength may

. ; be reset later

. ; in RecLength=128

. ;

. ;

constant MaxMem=RecLength+BufLength ;CalcMaxMem

See Also
SET VARIABLE

DATA – Create Numeric and Text Data

Syntax
[<label>] data <expr>,[,<expr>,...,<expr>]

[<label>] data “<text_string>”[,“<text_string>”,...]

Description
Initialize one or more words of program memory with data. The data may be
in the form of constants, relocatable or external labels, or expressions of any
of the above.

The data may also consist of ASCII character strings, <text_string>,
enclosed in single quotes for one character or double quotes for strings.
Single character items are placed into the low byte of the word, while strings
DS33014F - page 30  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 31 Thursday, October 9, 1997 9:02 AM
are packed two to a word with the first character in the most significant byte of
the word. If an odd number of characters are given in a string, the final byte is
zero.

When generating an object file, this directive can also be used to declare
initialized data values. Refer to the IDATA directive for more information.

Example
data reloc_label+10 ; constants
data 1,2,ext_label ; constants, externals
data “testing 1,2,3” ; text string
data ‘N’ ; single character
data start_of_program ; relocatable label

See Also
DW DB DE DT IDATA

DB – Declare Data of One Byte

Syntax
[<label>] db <expr>[,<expr>,...,<expr>]

Description
Reserve program memory words with packed 8-bit values. Multiple
expressions continue to fill bytes consecutively until the end of expressions.
Should there be an odd number of expressions, the last byte will be zero.

When generating an object file, this directive can also be used to declare
initialized data values. Refer to the IDATA directive for more information.

Example
db ’t’, 0x0f, ’e’, 0x0f, ’s’, 0x0f, ’t’, ’\n’

See Also
DATA DW DT DE IDATA

DE – Declare EEPROM Data Byte

Syntax
[<label>] de <expr> [, <expr>, ..., <expr>]

Description
Reserve memory words with 8-bit data. Each <expr> must evaluate to an
8-bit value. The upper bits of the program word are zeroes. Each character
in a string is stored in a separate word.
 1997 Microchip Technology Inc. DS33014F - page 31

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 32 Thursday, October 9, 1997 9:02 AM
Although designed for initializing EEPROM data on the PIC16C8X, the
directive can be used at any location for any processor.

Example
org H’2100’ ; Initialize EEPROM Data

de “My Program, v1.0”, 0

See Also
DATA DB DT DW

#DEFINE – Define a Text Substitution Label

Syntax
#define <name> [<string>]

Description
This directive defines a text substitution string. Wherever <name> is
encountered in the assembly code, <string> will be substituted.

Using the directive with no <string> causes a definition of <name> to be
noted internally and may be tested for using the IFDEF directive.

This directive emulates the ANSI ’C’ standard for #define. Symbols defined
with this method are not available for viewing using MPLAB.

Example
#define length 20
#define control 0x19,7
#define position (X,Y,Z) (Y-(2 * Z +X))

.

.

.
test_label dw position(1, length, 512)

bsf control ; set bit 7 in f19

See Also
IFDEF IFNDEF #UNDEFINE

DT – Define Table

Syntax
[<label>] dt <expr> [, <expr>, ..., <expr>]
DS33014F - page 32  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 33 Thursday, October 9, 1997 9:02 AM
Description
Generates a series of RETLW instructions, one instruction for each <expr>.
Each <expr> must be an 8-bit value. Each character in a string is stored in
its own RETLW instruction.

Example
dt “A Message”, 0

dt FirstValue, SecondValue, EndOfValues

See Also
DATA DB DE DW

DW – Declare Data of One Word

Syntax
[<label>] dw <expr>[,<expr>,...,<expr>]

Description
Reserve program memory words for data, initializing that space to specific
values. Values are stored into successive memory locations and the location
counter is incremented by one. Expressions may be literal strings and are
stored as described in the DATA directive.

When generating an object file, this directive can also be used to declare
initialized data values. Refer to the IDATA directive for more information.

Example
dw 39, “diagnostic 39”, (d_list*2+d_offset)

dw diagbase-1

See Also
DATA DB IDATA

ELSE – Begin Alternative Assembly Block to IF

Syntax
else
 1997 Microchip Technology Inc. DS33014F - page 33

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 34 Thursday, October 9, 1997 9:02 AM
Description
Used in conjunction with an IF directive to provide an alternative path of
assembly code should the IF evaluate to false. ELSE may be used inside a
regular program block or macro.

Example
speed macro rate

if rate < 50
dw slow

else
dw fast

endif
endm

See Also
IF ENDIF

END – End Program Block

Syntax
end

Description
Indicates the end of the program.

Example
start

. ; executable code

. ;

. ;

end ; end of instructions

ENDC – End an Automatic Constant Block

Syntax
endc
DS33014F - page 34  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 35 Thursday, October 9, 1997 9:02 AM
Description
ENDC terminates the end of a CBLOCK list. It must be supplied to terminate
the list.

See Also
CBLOCK

ENDIF – End Conditional Assembly Block

Syntax
endif

Description
This directive marks the end of a conditional assembly block. ENDIF may
be used inside a regular program block or macro.

See Also
IF ELSE

ENDM – End a Macro Definition

Syntax
endm

Description
Terminates a macro definition begun with MACRO.

Example
make_table macro arg1, arg2

dw arg1, 0 ; null terminate table name
res arg2 ; reserve storage

 endm

See Also
MACRO EXITM

ENDW – End a While Loop

Syntax
endw
 1997 Microchip Technology Inc. DS33014F - page 35

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 36 Thursday, October 9, 1997 9:02 AM
Description
ENDW terminates a WHILE loop. As long as the condition specified by the
WHILE directive remains true, the source code between the WHILE directive
and the ENDW directive will be repeatedly expanded in the assembly source
code stream. This directive may be used inside a regular program block or
macro.

Example
See the example for WHILE

See Also
WHILE

EQU – Define an Assembler Constant

Syntax
<label> equ <expr>

Description
The value of <expr> is assigned to <label>.

Example
four equ 4 ; assigned the numeric value of 4

; to label four

See Also
SET

ERROR – Issue an Error Message

Syntax
error “<text_string>”

Description
<text_string> is printed in a format identical to any MPASM error
message. <text_string> may be from one to eighty characters.

Example
error_checking macro arg1

if arg1 >= 55 ; if arg is out of range
error “error_checking-01 arg out of range”

endif
DS33014F - page 36  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 37 Thursday, October 9, 1997 9:02 AM
endm

See Also
MESSG

ERRORLEVEL – Set Message Level

Syntax
errorlevel 0|1|2|<+|-><msgnum>

Description
Sets the types of messages that are printed in the listing file and error file.

The values for <msgnum> are in Appendix C. Error messages cannot be
disabled. The setting of 0, 1, or 2 overrides individual message disabling or
enabling.

Example
errorlevel 1, -202

See Also
LIST

EXITM – Exit from a Macro

Syntax
exitm

Description
Force immediate return from macro expansion during assembly. The effect is
the same as if an ENDM directive had been encountered.

Example
test macro filereg

if filereg == 1 ; check for valid file
exitm

else
error “bad file assignment"

Setting Affect

0 Messages, warnings, and errors printed.
1 Warnings and errors printed.
2 Errors printed.
-<msgnum> Inhibits printing of message <msgnum>
+<msgnum> Enables printing of message <msgnum>
 1997 Microchip Technology Inc. DS33014F - page 37

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 38 Thursday, October 9, 1997 9:02 AM
endif
endm

See Also
MACRO ENDM

EXPAND – Expand Macro Listing

Syntax
expand

Description
Expand all macros in the listing file. This directive is roughly equivalent to the
/m MPASM command line option, but may be limited in scope by the
occurrence of a subsequent NOEXPAND.

See Also
MACRO NOEXPAND

EXTERN – Declare an Externally Defined Label

Syntax
 extern <label> [, <label>]

Description
For use when generating an object file. Declares symbol names that may be
used in the current module but are defined as global in a different module.
The EXTERN statement must be included before the <label> is used. At
least one label must be specified on the line. No <label> can be defined in
the current module.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
 extern Function

 ...

 call Function

See Also
TEXT IDATA UDATA UDATA_OVR UDATA_SHR GLOBAL
DS33014F - page 38  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 39 Thursday, October 9, 1997 9:02 AM
FILL – Specify Memory Fill Value

Syntax
[<label>] fill <expr>,<count>

Description
Generates <count> occurrences of the program word <expr>. If bounded
by parentheses, <expr> can be an assembler instruction.

Example
fill 0x1009, 5 ; fill with a constant

fill (GOTO RESET_VECTOR), NEXT_BLOCK-$

See Also
DW ORG DATA

GLOBAL – Export a Label

Syntax
 global <label> [, <label>]

Description
For use when generating an object file. Declares symbol names that are
defined in the current module and should be available to other modules. The
GLOBAL statement must be after the <label> is defined. At least one label
must be specified on the line.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
udata

Var1 res 1

Var2 res 1

global Var1, Var2

code

AddThree

global AddThree

addlw 3

return
 1997 Microchip Technology Inc. DS33014F - page 39

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 40 Thursday, October 9, 1997 9:02 AM
See Also
TEXT IDATA UDATA UDATA_OVR UDATA_SHR EXTERN

IDATA – Begin an Object File Initialized Data Section

Syntax
[<label>] idata [<RAM address>]

Description
For use when generating an object file. Declares the beginning of a section of
initialized data. If <label> is not specified, the section is named .idata. The
starting address is initialized to the specified address or zero if no address is
specified. No code can be generated in this segment.

The linker will generate a look-up table entry for each byte specified in an
idata section. The user must then link or include the appropriate initialization
code. See Appendix E for examples of initialization codes for various
PICmicro families. Note that this directive is not available for 12-bit core
devices.

The RES, DB and DW directives may be used to reserve space for variables.
RES will generate an initial value of zero. DB will initialize successive bytes of
RAM. DW will initialize successive bytes of RAM, one word at a time, in low
byte - high byte order.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
idata

LimitL dw 0

LimitH dw D’300’

Gain dw D’5’

Flags db 0

String db ‘Hi there!’

See Also

TEXT UDATA UDATA_OVR UDATA_SHR EXTERN GLOBAL
DS33014F - page 40  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 41 Thursday, October 9, 1997 9:02 AM
_ _IDLOCS – Set Processor ID Locations

Syntax
_ _idlocs <expr>

Description
Sets the four ID locations to the hexadecimal digits of the value of <expr>.
For example, if <expr> evaluates to 1AF, the first (lowest address) ID
location is zero, the second is one, the third is ten, and the fourth is fifteen.

Before this directive is used, the processor must be declared through the
command line, the LIST directive, or the PROCESSOR directive. This directive
is not valid for the PIC17CXX family.

Example
_ _idlocs H’1234’

See Also
LIST PROCESSOR _ _CONFIG

IF – Begin Conditionally Assembled Code Block

Syntax
if <expr>

Description
Begin execution of a conditional assembly block. If <expr> evaluates to true,
the code immediately following the IF will assemble. Otherwise, subsequent
code is skipped until an ELSE directive or an ENDIF directive is
encountered.

An expression that evaluates to zero is considered logically FALSE. An
expression that evaluates to any other value is considered logically TRUE.
The IF and WHILE directives operate on the logical value of an expression.
A relational TRUE expression is guaranteed to return a non-zero value,
FALSE a value of zero.

Example
if version == 100; check current version

movlw 0x0a

movwf io_1

else

movlw 0x01a
 1997 Microchip Technology Inc. DS33014F - page 41

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 42 Thursday, October 9, 1997 9:02 AM
movwf io_2

endif

See Also
ELSE ENDIF

IFDEF – Execute If Symbol has Been Defined

Syntax
ifdef <label>

Description
If <label> has been previously defined, usually by issuing a #DEFINE
directive or by setting the value on the MPASM command line, the conditional
path is taken. Assembly will continue until a matching ELSE or ENDIF
directive is encountered.

Example
#define testing1 ; set testing “on”

.

.

.

ifdef testing

<execute test code>; this path would

endif ; be executed.

See Also
#DEFINE ELSE ENDIF

IFNDEF #UNDEFINE

IFNDEF – Execute If Symbol has not Been Defined

Syntax
ifndef <label>

Description
If <label> has not been previously defined, or has been undefined by
issuing an #UNDEFINE directive, then the code following the directive will be
assembled. Assembly will be enabled or disabled until the next matching
ELSE or ENDIF directive is encountered.
DS33014F - page 42  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 43 Thursday, October 9, 1997 9:02 AM
Example
#define testing1 ; set testing on

.

.

.

#undefine testing1 ; set testing off

ifndef testing1 ; if not in testing mode

. ; execute

. ; this path

. ;

endif ;

;

end ; end of source

See Also
#DEFINE ELSE

IFDEF #UNDEFINE ENDIF

INCLUDE – Include Additional Source File

Syntax
include <<include_file>>

include “<include_file>”

Description
The specified file is read in as source code. The effect is the same as if the
entire text of the included file were placed here. Upon end-of-file, source code
assembly will resume from the original source file. Up to six levels of nesting
are permitted. <include_file> may be enclosed in quotes or angle
brackets. If a fully qualified path is specified, only that path will be searched.
Otherwise, the search order is: current working directory, source file directory,
MPASM executable directory.

Example
include “c:\sys\sysdefs.inc”; system defs

include <regs.h> ; register defs
 1997 Microchip Technology Inc. DS33014F - page 43

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 44 Thursday, October 9, 1997 9:02 AM
LIST – Listing Options

Syntax
list [<list_option>, ..., <list_option>]

Description
Occurring on a line by itself, the LIST directive has the effect of turning listing
output on, if it had been previously turned off. Otherwise, one of the following
list options can be supplied to control the assembly process or format the
listing file:

Example
list p=17c42, f=INHX32, r=DEC

See Also
NOLIST PROCESSOR RADIX ERRORLEVEL

EXPAND NOEXPAND

LOCAL – Declare Local Macro Variable

Syntax
local <label>[,<label>]

Table 3.2 List Directive Options

 Option Default Description

b=nnn 8 Set tab spaces.

c=nnn 132 Set column width.

f=<format> INHX8M Set the hex file output. <format> can be
INHX32, INHX8M, or INHX8S.

free FIXED Use free-format parser. Provided for
backward compatibility.

fixed FIXED Use fixed-format parser.

mm=ON|OFF On Print memory map in list file.

n=nnn 60 Set lines per page.

p=<type> None Set processor type; for example, PIC16C54.

r=<radix> hex Set default radix: hex, dec, oct.

st=ON|OFF On Print symbol table in list file.

t=ON|OFF Off Truncate lines of listing (otherwise wrap).

w=0|1|2 0 Set the message level. See ERRORLEVEL.

x=ON|OFF On Turn macro expansion on or off.

Note: All LIST options are evaluated as decimal numbers.
DS33014F - page 44  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 45 Thursday, October 9, 1997 9:02 AM
Description
Declares that the specified data elements are to be considered in local
context to the macro. <label> may be identical to another label declared
outside the macro definition; there will be no conflict between the two.

If the macro is called recursively, each invocation will have its own local copy.

Example
<main code segment>

.

.

.

len equ 10 ; global version

size equ 20 ; note that a local variable

; may now be created and modified

test macro size ;

local len,label ; local len and label

len set size ; modify local len

label res len ; reserve buffer

len set len-20 ;

endm ; end macro

See Also
MACRO ENDM

MACRO – Declare Macro Definition

Syntax
<label> macro [<arg>, ..., <arg>]

Description
A macro is a sequence of instructions that can be inserted in the assembly
source code by using a single macro call. The macro must first be defined,
then it can be referred to in subsequent source code.

A macro can call another macro, or may call itself recursively.

Please refer to Chapter 5, “Macro Language” for more information.

Example
Read macro device, buffer, count

movlw device
movwf ram_20
movlw buffer ; buffer address
 1997 Microchip Technology Inc. DS33014F - page 45

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 46 Thursday, October 9, 1997 9:02 AM
movwf ram_21
movlw count ; byte count

call sys_21 ; read file call
endm

See Also
ENDM LOCAL IF ELSE

ENDIF EXITM

_ _MAXRAM – Define Maximum RAM Location

Syntax
_ _maxram <expr>

Description
The _ _MAXRAM and _ _BADRAM directives together flag accesses to
unimplemented registers. _ _MAXRAM defines the absolute maximum valid
RAM address and initializes the map of valid RAM addresses to all addresses
valid at and below <expr>. <expr> must be greater than or equal to the
maximum page 0 RAM address and less than 1000H. This directive is
designed for use with the _ _BADRAM directive. Once the
_ _MAXRAM directive is used, strict RAM address checking is enabled, using
the RAM map specified by _ _BADRAM.

 _ _MAXRAM can be used more than once in a source file . Each use
redefines the maximum valid RAM address and resets the RAM map to all
locations.

Example
list p=16c622

_ _maxram H’0BF’

_ _badram H’07’–H’09’, H’0D’–H’1E’

_ _badram H’87’–H’89’, H’8D’, H’8F’-H’9E’

movwf H’07’ ; Generates invalid RAM warning

movwf H’87’ ; Generates invalid RAM warning

; and truncation message

See Also
_ _BADRAM
DS33014F - page 46  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 47 Thursday, October 9, 1997 9:02 AM
MESSG – Create User Defined Message

Syntax
messg “<message_text>”

Description
Causes an informational message to be printed in the listing file. The
message text can be up to 80 characters. Issuing a MESSG directive does not
set any error return codes.

Example
mssg_macro macro

messg “mssg_macro-001 invoked without argument”
endm

See Also
ERROR

NOEXPAND – Turn off Macro Expansion

Syntax
noexpand

Description
Turns off macro expansion in the listing file.

See Also
EXPAND

NOLIST – Turn off Listing Output

Syntax
nolist

Description
Turn off listing file output.

See Also
LIST
 1997 Microchip Technology Inc. DS33014F - page 47

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 48 Thursday, October 9, 1997 9:02 AM
ORG – Set Program Origin

Syntax
[<label>] org <expr>

Description
Set the program origin for subsequent code at the address defined in
<expr>. If <label> is specified, it will be given the value of the <expr>. If
no ORG is specified, code generation will begin at address zero.

This directive may not be used when generating an object file.

Example
int_1 org 0x20

; Vector 20 code goes here

int_2 org int_1+0x10

; Vector 30 code goes here

See Also
RES FILL

PAGE – Insert Listing Page Eject

Syntax
page

Description
Inserts a page eject into the listing file.

See Also
LIST TITLE SUBTITLE

PAGESEL – Generate Page Selecting Code

Syntax
pagesel <label>

Description
For use when generating an object file. An instruction to the linker to generate
page selecting code to set the page bits to the page containing the designated
<label>. Only one <label> should be specified. No operations can be
performed on <label>. <label> must have been previously defined.
DS33014F - page 48  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 49 Thursday, October 9, 1997 9:02 AM
The linker will generate the appropriate page selecting code. For 12-bit core
devices, the appropriate bit set/clear instructions on the STATUS register will
be generated. For 14-bit and 16-bit core devices, MOVLW and MOVWF
instructions will be generated to modify the PCLATH. If the device contains
only one page of program memory, no code will be generated.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
pagesel GotoDest

goto GotoDest

....

pagesel CallDest

call CallDest

See Also
BANKSEL BANKISEL

PROCESSOR – Set Processor Type

Syntax
processor <processor_type>

Description
Sets the processor type to <processor_type>.

Example
processor 16C54

See Also
LIST

RADIX – Specify Default Radix

Syntax
radix <default_radix>

Description
Sets the default radix for data expressions. The default radix is hex. Valid
radix values are: hex, dec, or oct.
 1997 Microchip Technology Inc. DS33014F - page 49

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 50 Thursday, October 9, 1997 9:02 AM
Example
radix dec

See Also
LIST

RES – Reserve Memory

Syntax
[<label>] res <mem_units>

Description
Causes the program counter to be advanced from its current location by the
value specified in <mem_units>. Note that <label> will be installed as an
address as opposed to a constant or variable.

Example
buffer res 64 ; reserve 64 words of storage

See Also
ORG FILL

SET – Define an Assembler Variable

Syntax
<label> set <expr>

Description
<label> assumes the value of the valid MPASM expression specified by
<expr>. The SET directive is functionally equivalent to the EQU directive
except that SET values may be subsequently altered by other SET directives.

Example
area set 0

width set 0x12

length set 0x14

area set length * width
DS33014F - page 50  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 51 Thursday, October 9, 1997 9:02 AM
length set length + 1

See Also
EQU VARIABLE

SPACE – Insert Blank Listing Lines

Syntax
space <expr>

Description
Insert <expr> number of blank lines into the listing file.

Example
space 3 ;Inserts three blank lines

See Also
LIST

SUBTITLE – Specify Program Subtitle

Syntax
subtitle “<sub_text>”

Description
<sub_text> is an ASCII string enclosed in double quotes, 60 characters or
less in length. This directive establishes a second program header line for
use as a subtitle in the listing output.

Example
subtitle “diagnostic section”

See Also
TITLE

TITLE – Specify Program Title

Syntax
title “<title_text>”
 1997 Microchip Technology Inc. DS33014F - page 51

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 52 Thursday, October 9, 1997 9:02 AM
Description
<title_text> is a printable ASCII string enclosed in double quotes. It must
be 60 characters or less. This directive establishes the text to be used in the
top line of each page in the listing file.

Example
title “operational code, rev 5.0”

See Also
LIST SUBTITLE

UDATA – Begin an Object File Uninitialized Data Section

Syntax
[<label>] udata [<RAM address>]

Description
For use when generating an object file. Declares the beginning of a section of
uninitialized data. If <label> is not specified, the section is named .udata.
The starting address is initialized to the specified address or zero if no
address is specified. No code can be generated in this segment. The RES
directive should be used to reserve space for data.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
udata

Var1 res 1

Double res 2

See Also
TEXT IDATA UDATA_OVR UDATA_SHR EXTERN GLOBAL

UDATA_OVR – Begin an Object File Overlayed
Uninitialized Data Section

Syntax
[<label>] udata_ovr [<RAM address>]
DS33014F - page 52  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 53 Thursday, October 9, 1997 9:02 AM
Description
For use when generating an object file. Declares the beginning of a section of
overlayed uninitialized data. If <label> is not specified, the section is named
.udata_ovr. The starting address is initialized to the specified address or zero
if no address is specified. The space declared by this section is overlayed by
all other udata_ovr sections of the same name. It is an ideal way of declaring
temporary variables since it allows multiple variables to be declared at the
same memory location. No code can be generated in this segment. The RES
directive should be used to reserve space for data.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”

Example
Temps udata_ovr

Temp1 res 1

Temp2 res 1

Temp3 res 1

Temps udata_ovr

LongTemp1 res 2

LongTemp2 res 2

See Also
TEXT IDATA UDATA EXTERN GLOBAL UDATA_SHR

UDATA_SHR – Begin an Object File Shared Uninitialized
Data Section

Syntax
[<label>] udata_shr [<RAM address>]

Description
For use when generating an object file. Declares the beginning of a section of
shared uninitialized data. If <label> is not specified, the section is named
.udata_shr. The starting address is initialized to the specified address or zero
if no address is specified. This directive is used to declare variables that are
allocated in RAM that is shared across all RAM banks (i.e. unbanked RAM).
No code can be generated in this segment. The RES directive should be used
to reserve space for data.

For more information, refer to Chapter 4, “Using MPASM to Create
Relocatable Objects.”
 1997 Microchip Technology Inc. DS33014F - page 53

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 54 Thursday, October 9, 1997 9:02 AM
Example
Temps udata_shr

Temp1 res 1

Temp2 res 1

Temp3 res 1

See Also
TEXT IDATA UDATA EXTERN GLOBAL UDATA_OVR

#UNDEFINE – Delete a Substitution Label

Syntax
#undefine <label>

Description
<label> is an identifier previously defined with the #DEFINE directive. It
must be a valid MPASM label. The symbol named is removed from the
symbol table.

Example
#define length20

.

.

.
#undefine length

See Also
#DEFINE IFDEF INCLUDE IFNDEF

VARIABLE – Declare Symbol Variable

Syntax
variable <label>[=<expr>][,<label>[=<expr>]]

Description
Creates symbols for use in MPASM expressions. Variables and constants
may be used interchangeably in expressions.

The VARIABLE directive creates a symbol that is functionally equivalent to
those created by the SET directive. The difference is that the VARIABLE
directive does not require that symbols be initialized when they are declared.

Note that variable values cannot be updated within an operand. You must
place variable assignments, increments, and decrements on separate lines.
DS33014F - page 54  1997 Microchip Technology Inc.

Chapter 3.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_3.frm Page 55 Thursday, October 9, 1997 9:02 AM
Example
Please refer to the CONSTANT example.

See Also
SET CONSTANT

WHILE – Perform Loop While Condition is True

Syntax
while <expr>

.

.

.
endw

Description
The lines between the WHILE and the ENDW are assembled as long as
<expr> evaluates to TRUE. An expression that evaluates to zero is
considered logically FALSE. An expression that evaluates to any other value
is considered logically TRUE. A relational TRUE expression is guaranteed to
return a non-zero value; FALSE a value of zero. A WHILE loop can contain at
most 100 lines and be repeated a maximum of 256 times.

Example
test_mac macro count

variable i
i = 0

while i < count
movlw i

i += 1
endw
endm

start
test_mac 5
end

See Also
ENDW IF
 1997 Microchip Technology Inc. DS33014F - page 55

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_3.frm Page 56 Thursday, October 9, 1997 9:02 AM

Notes:
DS33014F - page 56  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014F_4.frm Page 57 Thursday, October 9, 1997 9:02 AM
Chapter 4. Using MPASM to Create Relocatable Objects
 M
P

A
S

M

Introduction
With the introduction of MPASM v2.00 and MPLINK v1.00, users have the
ability to generate and link precompiled object modules. Writing source code
that will be assembled to an object module is slightly different from generating
executable code directly to a hex file. Existing MPASM routines will require
minor modifications to compile correctly into relocatable object modules.

Highlights
• Use of Header Files

• Program Memory Definition

• Instruction Operands

• RAM Allocation

• Configuration Bits and ID Locations

• Accessing Labels from Other Modules

• Paging and Banking Issues

• Unavailable Directives

• Generating the Object Module

• Code Example

Header Files
The Microchip supplied standard header files should be used when
generating object modules. These header files define the special function
registers for the target processor.

Program Memory
Program memory code must be preceded by a CODE section declaration.

Absolute Code:
Start CLRW
 OPTION
 –

Relocatable Code:
CODE
Start CLRW

OPTION
–

 1997 Microchip Technology Inc. DS33014F - page 57

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_4.frm Page 58 Thursday, October 9, 1997 9:02 AM
If more than one CODE section is defined in a source file, each section must
have a unique name. If the name is not specified, it will be given the default
name .code.

Each program memory section must be contiguous within a single source file.
A section may not be broken into pieces within a singe source file.

The physical address of the code can be fixed by supplying the optional
address parameter of the CODE directive. Situations where this might be
necessary are:

• Specifying interrupt vectors

• Ensuring that a code segment does not overlap page boundaries

Example Relocatable Code:
Reset CODE H’0lFF’

GOTO Start

Main CODE
CLRW

OPTION

Instruction Operands
There are some restrictions involving instruction operands. Instruction
operands must be of the form:

[HIGH|LOW] (<relocatable symbol> + <constant offset>)

where

• <relocatable symbol> is any label that defines a program or data
memory address

• <constant offset> is an expression that is resolvable at assembly
time to a value between -32768 and 32767

Either <relocatable symbol> or <constant offset> may be omitted.

Operands of the form:

<relocatable symbol> - <relocatable symbol>

will be reduced to a constant value if both symbols are defined in the same
code or data section.

RAM Allocation
RAM space must be allocated in a data section. Three types of data sections
are available:

• UDATA – Uninitialized data. This is the most common type of data
section. Locations reserved in this section are not initialized and can be
accessed only by the labels defined in this section or by indirect
accesses.
DS33014F - page 58  1997 Microchip Technology Inc.

Chapter 4.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_4.frm Page 59 Thursday, October 9, 1997 9:02 AM
• UDATA_OVR – Uninitialized overlayed data. This data section is used
for variables that can be declared at the same address as other
variables in the same module or in other linked modules. A typical use
of this section is for temporary variables.

• UDATA_SHR – Uninitialized shared data. This data section is used for
variables that will be placed in RAM that is unbanked or shared across
all banks.

• IDATA – Initialized data. The linker will generate a look-up table that
can be used to initialize the variables in this section to the specified
values. The locations reserved by this section can be accessed only by
the labels defined in this section or by indirect accesses.

The following example shows how a data declaration might be created.

Absolute Code:
CBLOCK 0x20

InputGain, OutputGain ;Control loop gains
HistoryVector ;Must be initialized to 0

Templ, Temp2, Temp3 ;Used for internal calculations
ENDC

Relocatable Code:
IDATA

HistoryVector DB 0

UDATA
InputGain RES 1

OutputGain RES 1

UDATA_OVR
Templ RES 1

Temp2 RES 1
Temp3 RES 1

If necessary, the location of the section may be fixed in memory by supplying
the optional address parameter. If more than one of each section type is
specified, each section must have a unique name. If a name is not provided,
the default section names are .idata, .udata, and .udata_ovr.

When defining initialized data in an IDATA section, the directives DB, DW,
and DATA can be used. DB will define successive bytes of data memory. DW
and DATA will define successive words of data memory in low byte-high byte
order. The following example shows how data will be initialized.
 1997 Microchip Technology Inc. DS33014F - page 59

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_4.frm Page 60 Thursday, October 9, 1997 9:02 AM
Relocatable Code:
00001 LIST p=17C44

00002 IDATA
0000 01 02 03 00003 Bytes D8 1,2,3
0003 34 12 78 56 00004 Words DW H’1234’,H’5678’

0007 48 69 00 00005 String DB “Hi”, 0

Configuration Bits and ID Locations
Configuration bits and ID locations can still be defined in a relocatable object
using the _ _CONFIG and _ _IDLOCS directives. Only one linked module
can specify these directives. They should be used prior to declaring any
CODE sections. After using these directives, the current section is undefined.

Accessing Labels From Other Modules
Labels that are defined in one module for use in other modules must be
exported using the GLOBAL directive. Labels must be defined before they are
declared GLOBAL. Modules that use these labels must use the EXTERN
directive to declare the existence of these labels. An example of using the
GLOBAL and EXTERN directives is shown below.

Relocatable Code, Defining Module:
UDATA

InputGain RES 1
OutputGain RES 1

GLOBAL InputGain, OutputGain

CODE
Filter

GLOBAL Filter
– ; Filter code

Relocatable Code, Referencing Module:
EXTERN InputGain, OutputGain, Filter

UDATA
Reading RES 1

CODE
...
MOVLW GAIN1
MOVWF InputGain
MOVLW GAIN2
MOVWF OutputGain
MOVF Reading,W
CALL Filter
DS33014F - page 60  1997 Microchip Technology Inc.

Chapter 4.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_4.frm Page 61 Thursday, October 9, 1997 9:02 AM
Paging and Banking Issues
In many cases, RAM allocation will span multiple banks, and executable code
will span multiple pages. In these cases, it is necessary to perform proper
bank and page set up to properly access the labels. However, since the
absolute addresses of these variable and address labels are not known at
assembly time, it is not always possible to place the proper code in the source
flle. For these situations, two new directives, BANKSEL and PAGESEL have
been added. These directives instruct the linker to generate the correct bank
or page selecting code for a specified label. An example of how code should
be converted is shown below.

Absolute Code:
LIST P=12C509

#include “P12C509.INC”

Varl EQU H'10'
Var2 EQU H'30'

...
MOVLW InitialValue
BCF FSR, 5
MOVWF Varl
BSF FSR, 5
MOVWF Var2
BSF STATUS, PA0
CALL Subroutine
...

Subroutine CLRW ;In Page 1
...
RETLW 0

Relocatable Code:
LIST P=12C509

#include “P12C509.INC”

Varl EQU H'10'
Var2 EQU H'30'

...
CODE
MOVLW InitialValue
BANKSEL Varl
MOVWF Varl
BANKSEL Var2
MOVWF Var2
PAGESEL Subroutine
CALL Subroutine
...

Subroutine CLRW
...
RETLW 0
 1997 Microchip Technology Inc. DS33014F - page 61

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_4.frm Page 62 Thursday, October 9, 1997 9:02 AM
Unavailable Directives
Macro capability and nearly all directives are available when generating an
object file. The only directive that is not allowed is the ORG directive. This can
be replaced by specifying an absolute CODE segment, as shown below.

Absolute Code:
Reset ORG H’01FF’

GOTO Start

Relocatable Code:
Reset CODE H’0lFF’

GOTO Start

Generating the Object Module
Once the code conversion is complete, the object module is generated by
requesting an object file on the command line or in the shell interface. When
using MPASM for Windows, check the checkbox labeled “Object File”. When
using the DOS command line interface, specify the /o option. When using the
DOS shell interface, toggle “Assemble to Object File” to “Yes”. The output file
will have a .o extension.

Example
The following is extracted from the example multiply routines given as a
sample with MPASM. Most of the comments have been stripped for brevity.

Absolute Code:
LIST P=16C54
#INCLUDE “P16C5x.INC”

mulcnd EQU 09 ; 8 bit multiplicand
mulplr EQU 10 ; 8 bit multiplier
H_byte EQU 12 ; High byte of the 16 bit result
L_byte EQU 13 ; Low byte of the 16 bit result
count EQU 14 ; loop counter

mpy clrf H_byte
clrf L_byte
movlw 8
movwf count
movf mulcnd,w
bcf STATUS,C ;Clear carry bit

Loop rrf mulplr,F
btfsc STATUS,C
addwf H_byte,F
rrf H_byte,F
rrf L_byte,F
decfsz count,F
DS33014F - page 62  1997 Microchip Technology Inc.

Chapter 4.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_4.frm Page 63 Thursday, October 9, 1997 9:02 AM
goto loop

 retlw 0
;***
; Test Program
;***
start clrw

option
main movf PORTB,w

movwf mulplr ; multiplier (in mulplr) = 05
movf PORTB,W
movwf mulcnd

call_m call mpy ; The result is in F12 & F13
; H_byte & L_byte

goto main

ORG 01FFh
goto start

END

Since a 8x8 bit multiply is a useful, generic routine, it would be handy to break
this off into a separate object file that can be linked in when required. The
above file can be broken into two files, a calling file representing an
application and a generic routine that could be incorporated in a library.

Relocatable Code, Calling File
LIST P=16C54
#INCLUDE “P16C5x.INC”

EXTERN mulcnd, mulplr, H_byte, L_byte
EXTERN mpy

CODE
start clrw

option

main movf PORTB, W
movwf mulplr
movf PORTB, W
movwf mulcnd

call_m call mpy ; The result is in H_byte & L_byte
goto main

Reset CODE H'0lFF'
goto start

END
 1997 Microchip Technology Inc. DS33014F - page 63

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_4.frm Page 64 Thursday, October 9, 1997 9:02 AM
Relocatable Code, Library Routine:
LIST P=16C54
#INCLUDE “P16C5x.INC”

UDATA
mulcnd RES l ; 8 bit multiplicand
mulplr RES 1 ; 8 bit multiplier
H_byte RES 1 ; High byte of the 16 bit result
L_byte RES 1 ; Low byte of the 16 bit result
count RES 1 ; loop counter

GLOBAL mulcnd, mulplr,H_byte, L_byte

CODE
mpy

GLOBAL mpy

clrf H_byte
clrf L_byte
movlw 8
movwf count
movf muland, W
baf STATUS, C ; Clear carry bit

loop rrf mulplr, F
btfsc STATUS, C
addwf H_byte, F
rrf H_byte, F
rrf L_byte, F
decfsz count, F
goto loop

retlw 0

END
DS33014F - page 64  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014F_5.frm Page 65 Thursday, October 9, 1997 9:02 AM
Chapter 5. Macro Language
 M
P

A
S

M

Introduction
Macros are user defined sets of instructions and directives that will be
evaluated in-line with the assembler source code whenever the macro is
invoked.

Macros consist of sequences of assembler instructions and directives. They
can be written to accept arguments, making them quite flexible. Their
advantages are:

• Higher levels of abstraction, improving readability and reliability.

• Consistent solutions to frequently performed functions.

• Simplified changes.

• Improved testability.

Applications might include creating complex tables, frequently used code, and
complex operations.

Highlights
The points that will be highlighed in this chapter are:

• Macro Syntax

• Text Substitution

• Local Symbols

• Recursive Macros

• Macro Usage

• Examples

Terms

Macro
A macro is a collection of assembler instructions that are included in the
assembly code when the macro name is encountered in the source code.
Macros must be defined before before they are used; forward references to
macros are not allowed.

All statements following the MACRO directive (see Chapter 3) are part of the
macro definition. Labels used within the macro must be local to the macro so
the macro can be called repetitively.
 1997 Microchip Technology Inc. DS33014F - page 65

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_5.frm Page 66 Thursday, October 9, 1997 9:02 AM
Local Label
A local label is one that is defined with the LOCAL directive (see Chapter 3).
These labels are particular to a given instance of the macro’s instantiation. In
other words, the symbols and labels that are declared as local are purged
from the symbol table when the ENDM macro is encountered.

Recursion
This is the concept that a macro, having been defined, can call itself. Great
care should be taken when writing recursive macros; it is easy to get caught in
an infinite loop where there will be no exit from the recursion.

Nesting Depth
Macros can be nested to sixteen levels deep.

Macro Syntax
MPASM macros are defined according to the following syntax:

<label>macro [<arg1>,<arg2> ..., <arg0>]
.
.
.
endm

where <label> is a valid MPASM label and <arg> is any number of
optional arguments supplied to the macro. The values assigned to these
arguments at the time the macro is invoked will be substituted wherever the
argument name occurs in the body of the macro.

The body of a macro may be comprised of MPASM directives, PICmicro MCU
assembly instructions, or MPASM Macro Directives (LOCAL for example).
Refer to Chapter 3. MPASM continues to process the body of the macro until
an EXITM or ENDM directive is encountered.

Macro Directives
There are directives that are unique to macro definitions. They cannont be
used out of the macro context (refer to Chapter 3 for details concerning these
directives):

• MACRO

• LOCAL

• EXITM

• ENDM

Note: Forward references to macros are not permitted.
DS33014F - page 66  1997 Microchip Technology Inc.

Chapter 5.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_5.frm Page 67 Thursday, October 9, 1997 9:02 AM
When writing macros, you can use any of these directives PLUS any other
directives supported by MPASM.

Text Substitution
String replacement and parsing patterns may appear within the body of a
macro.

Arguments may be used anywhere within the body of the macro, except as
part of normal expression. For example, the following macro:

define_table macro
local a = 0
while a < 3

entry#v(a) dw 0
a += 1

endw
endm

would generate:

entry0 dw0
entry1 dw0
entry2 dw0
entry3 dw0

when invoked.

Macro Usage
Once the macro has been defined, it can be invoked at any point within the
source module by using a macro call, as described below:

<macro_name> [<arg>, ..., <arg>]

where <macro_name> is the name of a previously defined macro and
arguments are supplied as required.

Note: The previous syntax of the “dot” format for macro specific
directives is no longer supported. For compatibility reasons, old
ASM17 code that use this format will assemble by MPASM, but as
mentioned before, you are encouraged to write new code based
on the constructs defined within this document to ensure upward
compatibility with MPASM.

Command Description

<arg> Substitute the argument text supplied as part of the
macro invocation.

#v(<expr>) Return the integer value of <expr>. Typically, used to
create unique variable names with common prefixes or
suffixes. Cannot be used in conditional assembly
directives (e.g. IFDEF, WHILE).
 1997 Microchip Technology Inc. DS33014F - page 67

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_5.frm Page 68 Thursday, October 9, 1997 9:02 AM
The macro call itself will not occupy any locations in memory. However, the
macro expansion will begin at the current memory location. Commas may be
used to reserve an argument position. In this case, the argument will be an
empty string. The argument list is terminated by white space or a semicolon.

The EXITM directive (see Chapter 3) provides an alternate method for
terminating a macro expansion. During a macro expansion, this directive
causes expansion of the current macro to stop and all code between the
EXITM and the ENDM directives for this macro to be ignored. If macros are
nested, EXITM causes code generation to return to the previous level of
macro expansion.

Examples

Eight by Eight Multiply
 subtitle “macro definitions”
 page
;
; multiply - eight by eight multiply macro, executing
; in program memory. optimized for speed, straight
; line code.
;
; written for the PIC17C42.
;
multiply macro arg1,arg2, dest_hi, dest_lo

;
local i = 0 ; establish local index variable

; and initialize it.
;

movlw arg1 ; setup multiplier
movwf mulplr ;

;
movlw arg2 ; setup multiplicand in w reg

;
clrf dest_hi ; clear the destination regs
clrf dest_lo ;

;
bcf _carry ; clear carry for test

;
while i < 8 ; do all eight bits
addwf dest_hi ; then add multiplicand
rrcf dest_hi ; shift right through carry
rrcf dest_lo ; shift right again, snag carry

; if set by previous rotate
i += 1 ; increment loop counter

endw ; break after eight iterations
endm ; end of macro.

The macro declares all of the required arguments. In this case, there are four.
The LOCAL directive then establishes a local variable “i” that will be used as
an index counter. It is initialized to zero.
DS33014F - page 68  1997 Microchip Technology Inc.

Chapter 5.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_5.frm Page 69 Thursday, October 9, 1997 9:02 AM
A number of assembler instructions are then included. When the macro is
executed, these instructions will be written in line with the rest of the
assembler source code.

The macro writes the multiplication code using an algorithm that uses right
shifts and adds for each bit set in the eight bits of the multiplier. The WHILE
directive is used for this function, continuing the loop until “i” is greater than
or equal to eight.

The end of the loop is noted by the ENDW directive. Execution continues with
the statement immediately following the ENDW when the WHILE condition
becomes TRUE. The entire macro is terminated by the ENDM directive.

Constant Compare
As another example, if the following macro were written:

include “16cxx.reg”
;
; compare file to constant and jump if file
; >= constant.
;
cfl_jge macro file, con, jump_to

movlw con & 0xff
subwf file, w
btfsc status, carry
goto jump_to
endm

and invoked by:

cfl_jgeswitch_val, max_switch, switch_on

it would produce:

movlw max_switch & 0xff
subwf switch_val, w
btfsc status, carry
goto switch_on
 1997 Microchip Technology Inc. DS33014F - page 69

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_5.frm Page 70 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 70  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB P

art 1 –

33014F_0Book.book : 33014F_6.frm Page 71 Thursday, October 9, 1997 9:02 AM
Chapter 6. Expression Syntax and Operation
 M
P

A
S

M

Introduction
This chapter describes various expression formats, syntax, and operations
used by MPASM.

Highlights
The points that will be highlighted in this chapter are:

• Text Strings

• Numeric Constants and Radix

• Arithmetic Operators and Precedence

• High/Low and Increment/Decrement Operators

Terms

Expressions
Expressions are used in the operand field of the source line and may contain
constants, symbols, or any combination of constants and symbols separated
by arithmetic operators. Each constant or symbol may be preceded by a plus
or minus to indicate a positive or negative expression.

Operators
Operators are arithmetic symbols, like the plus sign “+” and the minus sign “-”,
that are used when forming well-defined expressions. Each operator has an
assigned precedence.

Precedence
Precedence is the concept that some elements of an expression get
evaluated before others. Operators of the same precedence are evaluated
from left to right.

Radix
Radix is the base-numbering system that the assembler uses when
evaluating expressions. The default radix is hexadecimal (base 16). You can
change the default radix (See Chapter 3) and override the default radix with
certain radix override operators.

Note: Expressions are evaluated in 32 bit integer math (floating point is
not currently supported).
 1997 Microchip Technology Inc. DS33014F - page 71

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_6.frm Page 72 Thursday, October 9, 1997 9:02 AM
Text Strings
A “string” is a sequence of any valid ASCII character (of the decimal range of
0 to 127) enclosed by double quotes.

Strings may be of any length that will fit within a 255 column source line. If a
matching quote mark is found, the string ends. If none is found before the end
of the line, the string will end at the end of the line. While there is no direct
provision for continuation onto a second line, it is generally no problem to use
a second DW directive for the next line.

The DW directive will store the entire string into successive words. If a string
has an odd number of characters (bytes), the DW and DATA directives will pad
the end of the string with one byte of zero (00).

If a string is used as a literal operand, it must be exactly one character long, or
an error will occur.

See the examples below for the object code generated by different
statements involving strings.

7465 7374 696E dw “testing output string one\n”

6720 6F75 7470

7574 2073 7472

696E 6720 6F6E

650A

 #define str “testing output string two”

B061 movlw “a”

7465 7374 696E data “testing first output string”

6720 6669 7273

7420 6F75 7470

7574 2073 7472

696E 6700
DS33014F - page 72  1997 Microchip Technology Inc.

Chapter 6.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_6.frm Page 73 Thursday, October 9, 1997 9:02 AM
The assembler accepts the ANSI ‘C’ escape sequences to represent certain
special control characters:

Table 6.1 ANSI ‘C’ Escape Sequences

Escape
Character

Description Hex
Value

\a Bell (alert) character 07

 \b Backspace character 08

 \f Form feed character 0C

\n New line character 0A

\r Carriage return character 0D

\t Horizontal tab character 09

 \v Vertical tab character 0B

 \\ Backslash 5C

 \? Question mark character 3F

 \’ Single quote (apostrophe) 27

 \” Double quote character 22

\0OO Octal number (zero, Octal digit, Octal digit)

 \xHH Hexadecimal number
 1997 Microchip Technology Inc. DS33014F - page 73

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_6.frm Page 74 Thursday, October 9, 1997 9:02 AM
Numeric Constants and Radix
MPASM supports the following radix forms: hexadecimal, decimal, octal,
binary, and ASCII. The default radix is hexadecimal; the default radix
determines what value will be assigned to constants in the object file when
they are not explicitly specified by a base descriptor.

Constants can be optionally preceded by a plus or minus sign. If unsigned,
the value is assumed to be positive.

The following table presents the various radix specifications:

Note: Intermediate values in constant expressions are treated as 32-bit
unsigned integers. Whenever an attempt is made to place a
constant in a field for which it is too large, a truncation warning will
be issued.

Table 6.2 Radix Specifications

Type Syntax Example

Decimal D’<digits>’ D’100’

Hexadecimal H’<hex_digits>’ H’9f’

Octal O’<octal_digits>’ O’777’

Binary B’<binary_digits>’ B’00111001’

ASCII ’<character>’
A’<character>’

’C’
A’C’
DS33014F - page 74  1997 Microchip Technology Inc.

Chapter 6.

P
art 1 –M

P
A

S
M

33014F_0Book.book : 33014F_6.frm Page 75 Thursday, October 9, 1997 9:02 AM
Table 6.3 Arithmatic Operators and Precedence

Operator Example

$ Return program counter goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a == b)

- Negation (2’s complement) -1 * Length

~ Complement flags = ~flags

high Return high byte movlw high CTR_Table

low Return low byte movlw low CTR_Table

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift flags = flags << 1

>> Right shift flags = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

!= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG

^= Exclusive OR, set equal flags ^= ERROR_FLAG
 1997 Microchip Technology Inc. DS33014F - page 75

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_6.frm Page 76 Thursday, October 9, 1997 9:02 AM
High/Low

Syntax
high <operand>
low <operand>

Description
The high operators are used to return the high byte or the low byte of a 16-bit
label value. This is done to handle dynamic pointer calculations as might be
used with table read and write instructions.

Example
movlw low size ; handle the lsb’s
movpf wreg, low size_lo
movlw high size ; handle the msb’s
movpf wreg, high size_hi

Increment/Decrement

Syntax
<variable>++
<variable>--

Description
Increments or decrements a variable value. These operators can only be
used on a line by themselves; they cannot be embedded within other
expression evaluation.

Example
LoopCount = 4

while LoopCount > 0
rlf Reg, f

LoopCount--
endw
DS33014F - page 76  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FKt.frm Page 77 Thursday, October 9, 1997 9:02 AM
Part 2 – MPLINK
P
art 2 – M

P
LIN

K

Chapter 1. Introduction . 79

Chapter 2. Usage . 83

Chapter 3. Command File . 85

Chapter 4. Linker Map File . 89

Chapter 5. Linker Processing . 91

Chapter 6. Terminology . 95
 1997 Microchip Technology Inc. DS33014F - page 77

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FKt.frm Page 78 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 78  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FK1.frm Page 79 Thursday, October 9, 1997 9:02 AM
Chapter 1. Introduction
P
art 2 – M

P
LIN

K

MPLINK Preview

What is MPLINK?
MPLINK is a linker for the Microchip C compiler, MPLAB-C, and the Microchip
relocatable assembler, MPASM. MPLINK is introduced with MPLAB-C
v1.75.xx (pre-release and beta test versions of v2.00) and MPASM v2.00 and
can only be used with these or later versions.

How MPLINK Helps You
MPLINK allows you to produce modular, re-usable code with MPLAB-C and
MPASM. Control over the linking process is accomplished through a linker
"script" file and with command line options. MPLINK ensures that all symbolic
references are resolved and that code and data fit into the available PICmicro
device.

What you need to know to use MPLINK
MPLINK is one tool in the MPASM and MPLAB-C tool set. You should be
familiar with MPASM, and with MPLAB-C if you are using the compiler. You
should understand the basic architecture of the PICmicros, especially the
ROM and RAM memory maps. You should also familiarize yourself with
MPLIB, the librarian.

Product Description
MPLINK combines multiple input object modules generated by MPLAB-C or
MPASM, into a single executable file. The actual addresses of data and the
location of functions will be assigned when MPLINK is executed. This means
that you will instruct MPLINK to place code and data somewhere within
named regions of memory, not to specific physical locations.

Once the linker knows about the ROM and RAM memory regions available in
the target PICmicro device and it analyzes all the input files, it will try to fit the
application’s routines into ROM and assign its data variables into available
RAM. If there is too much code or too many variables to fit, MPLINK will give
an error message.

MPLINK also provides flexibility for specifying that certain blocks of data
memory are re-usable, so that different routines (which never call each other
and which don’t depend upon this data to be retained between execution) can
share limited RAM space.
 1997 Microchip Technology Inc. DS33014F - page 79

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK1.frm Page 80 Thursday, October 9, 1997 9:02 AM
Libraries are available for most PICmicro peripheral functions as well as for
many standard C functions. The linker will only extract and link individual
functions that are needed for the current application from the included
libraries. This means that relatively large libraries can be used in a highly
efficient manner.

MPLINK combines all input files to generate the executable output and
ensures that all addresses are resolved. Any function in the various input
modules that attempts to access data or call a routine that has not been
allocated or created will cause MPLINK to generate an error.

MPLINK also generates the symbolic information for debugging your
application with MPLAB, and produces the HEX object file for the executable
PICmicro code used by device programmers.

MPLINK is executed after assembling or compiling relocatable object
modules with MPASM and/or MPLAB-C.

File Formats
MPLINK uses and generates various different file types. MPLINK accepts
three types of input files: object files, library files, and linker command files.
The object files and library files used by MPLINK are COFF files which
support relocatable object modules and robust symbolic debugging. The
linker command files used by MPLINK are ASCII text files.

MPLINK generates five types of output files:

• COFF Output File: a binary file containing the relocated input sections,
no unresolved externals, robust symbolic debug info, and all the
necessary information to generate a COD, listing, and hex file.

• COD File: a binary file containing debug information. This is the debug
format currently supported by MPLAB.

• Map File: an ASCII text file which lists information about sections and
symbols.

• Listing File: an ASCII text file which mixes the source code with
disassembled code.

• Hex File: a file used for device programming.

The linker first generates the output COFF file and map file. The linker then
translates the output COFF to a COD, listing, hex programming file. The COD
file format is the currently supported debugging file format for MPLAB.

Linker Components
MPLINK is actually comprised of four separate programs. The first program,
'mplink.exe' is a shell program which invokes the other three programs. The
user only interacts with the 'mplink.exe' shell program.
DS33014F - page 80  1997 Microchip Technology Inc.

P
art 2 – M

P
LIN

K

Chapter 1. Introduction

33014F_0Book.book : 33014FK1.frm Page 81 Thursday, October 9, 1997 9:02 AM
The shell program first invokes ’_mplink.exe’, which is the actual linker, and
passes it the command line options. The linker generates an output COFF file
and map file. If the linker completes successfully, the shell program then
invokes ’mp2cod.exe’ to translate the output COFF file into a COD file and a
listing file. If this step completes successfully, the shell program then invokes
’mp2hex.exe’ to translate the COFF file into a HEX programming file.

Tools and Supported Platforms
MPLINK is distributed in two executable formats: a Win32 console application
suitable for Windows95 and WindowsNT platforms and a DOS-extended
DPMI application suitable for Windows 3.x and DOS platforms. Executables
which are DOS-extended applications have names which end with ’d’ to
distinguish them from the Win32 versions. DOS-extended versions require
the DOS extender program ’DOS4GW.EXE’ which is also distributed with
MPLINK.

As mentioned in the section "File Formats", MPLINK is comprised of four
executables: the shell program ’mplink.exe’, the actual linker ’_mplink.exe’, a
COFF to COD file translater ’mp2cod.exe’, and a COD to HEX file translater,
’mp2hex.exe’.

Additional software tools are distributed with MPLINK. These tools include a
librarian ’mplib.exe’, a COFF file disassembler ’mpdis.exe’, a COFF dump
utility ’mpcoff.exe’, and a COD dump utility ’mpcod.exe’.
 1997 Microchip Technology Inc. DS33014F - page 81

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK1.frm Page 82 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 82  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FK2.frm Page 83 Thursday, October 9, 1997 9:02 AM
Chapter 2. Usage
P
art 2 – M

P
LIN

K

Command Line
mplink { cmdfile | [objfile] | [libfile] | [option] } ...

’cmdfile’ is the name of a linker command file. All linker command files
must have the extension ’.lkr’.

’objfile’ is the name of an assembler or compiler generated object file.
All object files must have the extension ’.o’.

’libfile’ is the name of a librarian created library file. All library files must
have the extension ’.lib’.

’option’ is a linker command line option described below.

Table 2.1 Linker Command Line Options

There is no required order for the command line arguments, however,
changing the order can affect the operation of the linker. Specifically,
additions to the library/object directory search path are appended to the end
of the current library/object directory search path as they are encountered on
the command line and in command files.

Option Description

/o <filename> specify output file ’filename’, default is ’a.out’

/m <filename> create map file ’filename’

/L <pathlist> semi-colon delimited list of directories to search for
library/object files

/K <pathlist> semi-colon delimited list of directories to search for
linker command files

/n <length> number of lines per listing page (0 = no pagination)

/h, /? show this help screen

/a <hexformat> specify format of hex programming file.
Valid formats are INHX8M, INHX8S, INHX32

/q quiet mode operation
 1997 Microchip Technology Inc. DS33014F - page 83

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK2.frm Page 84 Thursday, October 9, 1997 9:02 AM
Library and object files are searched for in the order in which directories occur
in the library/object directory search path. Therefore, changing the order of
directories may change which file is selected.

The /o option is used to supply the name of the generated output COFF file.
The linker also generates a COD file for MPLAB debugging, and an Intel
format HEX programming. Both of these files have the same name as the
output COFF file but with the file extensions ’.cod’ and ’.hex’ respectively. If
the /o option is not supplied, the default output COFF file is named ’a.out’ and
the corresponding COD and HEX files are named ’a.cod’ and ’a.hex’.

Usage Example
Suppose there are two object files to be linked,’a.o’ and ’b.o’, a linker
command file ’lnk17C44.lkr’, a library file ’math.lib’, and we want the linker to
generate a mapfile ’c.map’, an output COFF file ’c.out’, an output COD file
’c.cod’ and an output programming file ’c.hex’. If the input files are in the
current directory, the following command line would produce the desired
results:

mplink -o c.out -m c.map a.o b.o lnk17C44.lkr
DS33014F - page 84  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FK3.frm Page 85 Thursday, October 9, 1997 9:02 AM
Chapter 3. Command File
P
art 2 – M

P
LIN

K

A linker command file is an ASCII text file which is processed by the linker.

Linker command files can be created to control the operation of the linker.
The linker command file is used:

1. To specify an additional directory for the library/object search path

2. To specify an additional directory for the linker command file search
path

3. To specify additional object files and library files for linking

4. To include additional linker command files

5. To define the target processor’s memory architecture

6. To locate sections within the target processor’s memory

7. To specify the size of the stack and, optionally, the target memory
where it resides

Each line in a linker command file is either a directive or a comment. Any text
following a ’//’ is ignored. The following directives are supported, each one is
described below: LIBPATH, LKRPATH, FILES, INCLUDE, DATABANK,
CODEPAGE, SHAREBANK, SECTION, and STACK.

Directives

LIBPATH Directive:
Library and object files which do not have a path are searched for using the
library/object search path. The following directive appends additional search
directories to the library/object search path:

LIBPATH ’libpath’

where, ’libpath’ is a semicolon delimited list of directories.

Example:

To append the current directory and the directory ’C:\PROJECTS\INCLUDE’
to the library/object search path, the following line should be added to the
linker command file:

LIBPATH .;C:\PROJECTS\INCLUDE

LKRPATH Directive:
Linker command files that do not have a path are searched for using the linker
command file search path. The following directive appends additional search
directories to the linker command file search path:

LKRPATH ’lkrpath’
 1997 Microchip Technology Inc. DS33014F - page 85

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK3.frm Page 86 Thursday, October 9, 1997 9:02 AM
where, ’lkrpath’ is a semicolon delimited list of directories.

Example:

To append the current directory’s parent and the directory
’C:\PROJECTS\SCRIPTS’ to the linker command file search path, the
following line should be added to the linker command file:

LKRPATH ..;C:\PROJECTS\SCRIPTS

FILES Directive:
The following directive specifies object or library files for linking:

FILES ’objfile/libfile’ [’objfile/libfile’...]

where, ’objfile/libfile’ is either an object or library file. Note, more than one
object or library file can be specified in a single FILES directive.

Example:

To specify that the object module ’main.o’ be linked with the library file
’math.lib’, the following line should be added to the linker command file:

FILES main.o math.lib

INCLUDE Directive:
The following directive includes an additional linker command file:

INCLUDE ’cmdfile’

where, ’cmdfile’ is the name of the linker command file to include.

Example:

To include the linker command file named ’mylink.lkr’, the following line should
be added to the linker command file:

INCLUDE mylink.lkr

DATABANK, CODEPAGE, SHAREBANK Directives:
The following directives define portions of the target’s memory by specifiying
a name for a block of memory, its starting address, and its ending address:

DATABANK NAME=’memName’ START=’addr’ END=’addr’ [PROTECTED]

CODEPAGE NAME=’memName’ START=’addr’ END=’addr’ [PROTECTED]
[FILL=’fillValue’]

SHAREBANK NAME=’memName’ START=’addr’ END=’addr’ [PROTECTED]

where,

’memName’ is any ASCII string used to identify a DATABANK,
CODEPAGE, or SHAREBANK

’addr’ is a decimal or hexadecimal number specifying an address
DS33014F - page 86  1997 Microchip Technology Inc.

P
art 2 – M

P
LIN

K

Chapter 3. Command File

33014F_0Book.book : 33014FK3.frm Page 87 Thursday, October 9, 1997 9:02 AM
’fillValue’ is a 16 bit quantity which fills any unused portion of a memory block.
Only CODEPAGE directives may have a FILL attribute.

The DATABANK and SHAREBANK directives define data memory, the
CODEPAGE directive is used to define program memory.

The SHAREBANK directive identifies a region in RAM which is mapped
across multiple banks. Note, a SHAREBANK directive should be given for
each bank that shares a region and each of these directives should have the
same NAME. Not all PICmicros have shared RAM. Check the data book and
processor specific assembly files.

The PROTECTED attribute marks a memory block and prevents the linker
from placing unassigned relocatable sections into the memory block. The
PROTECTED marking does not prevent the linker from placing absolute
sections or assigned relocatable sections into the marked memory block.

Example:

To specify a logical block of program memory named ’constants’ that begins
at address ’0x100’ and ends at address ’0x1FF’, the following line should be
added to the linker command file:

CODEPAGE NAME=constants START=0x100 END=0x1FF

Another Example:

The following example specifies a physical block of data memory named ’sfr’
which is shared across four banks. The SHAREBANK’s begin at offset ’0x0’
in each bank and end at offset ’0xF’ in each bank. Each bank is 0x100 bytes
long. The PROTECTED attribute prevents the linker from placing any
unassigned relocatable sections into the memory block.

SHAREBANK NAME=sfr START=0x000 END=0x00F PROTECTED
SHAREBANK NAME=sfr START=0x100 END=0x10F PROTECTED
SHAREBANK NAME=sfr START=0x200 END=0x20F PROTECTED
SHAREBANK NAME=sfr START=0x300 END=0x30F PROTECTED

SECTION Directive:
The following directive defines a section by specifying its name, and either the
block of program memory in ROM or the block of data memory in RAM which
contains the section:

SECTION NAME=’secName’ { ROM=’memName’ | RAM=’memName’ }

where,

’secName’ is an ASCII string used to identify a SECTION, this is the same
name for the section in the COFF file

’memName’ is a previously defined SHAREBANK, DATABANK or
CODEPAGE

The ROM attribute must always refer to program memory previously defined
using a CODEPAGE directive. The RAM attribute must always refer to data
memory previously defined with a DATABANK or SHAREBANK directive.
 1997 Microchip Technology Inc. DS33014F - page 87

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK3.frm Page 88 Thursday, October 9, 1997 9:02 AM
Example:

To specify that a section whose name is ’filter_coeffs’ be loaded into the
previously defined logical block of program memory named ’constants’, the
following line should be added to the linker command file:

SECTION NAME=filter_coeffs ROM=constants

STACK Directive:
MPLAB-C usually requires a software stack be set up. The following
statement specifies the stack size and an optional target memory where the
stack is to be allocated:

STACK SIZE=’allocSize’ [RAM=’memName’]

where,

’allocSize’ is the size in bytes of the stack and ’memName’ is the name of a
memory previously declared using a DATABANK or SHAREBANK statement.

Example:

To set the stack size to be ’0x20’, the following line should be added to the
linker command file:

STACK SIZE=0x20 RAM=gpr0

Linker Command File Example:
The following is an example linker command file for the PIC17C44.

INCLUDE user.lkr // Include another linker command file
LIBPATH c:\projects\current// Add a directory to the search path

CODEPAGE NAME=vectors START=0x0END=0x20// ROM area for reset/int vectors
CODEPAGE NAME=page0 START=0x21END=0x1FFF// User program memory area

DATABANK NAME=sfr0 START=0x10END=0x17//Special function reg’s in RAM bank 0
DATABANK NAME=sfr1 START=0x110END=0x117//Special function reg’s in RAM bank 1
DATABANK NAME=sfr2 START=0x210END=0x217//Special function reg’s in RAM bank 2
DATABANK NAME=sfr3 START=0x310END=0x317//Special function reg’s in RAM bank 3

DATABANK NAME=gpr0 START=0x20END=0xFF//General purpose RAM bank 0
DATABANK NAME=gpr1 START=0x120END=0x1FF//General purpose RAM bank 1

SHAREBANK NAME=sfrShare START=0x0END=0xF//Shared unbanked SFR’s
SHAREBANK NAME=sfrShare START=0x100END=0x10F//Shared unbanked SFR’s
SHAREBANK NAME=sfrShare START=0x200END=0x20F//Shared unbanked SFR’s
SHAREBANK NAME=sfrShare START=0x300END=0x30F//Shared unbanked SFR’s

SECTION NAME=.cinit ROM=page0 // .cinit section resides in ROM
SECTION NAME=.code ROM=page0 // .code section resides in ROM
SECTION NAME=.udata RAM=gpr0 // Unitialized data occupies RAM

STACK SIZE=0x20 RAM=gpr0// Specify stack size and location
DS33014F - page 88  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FK4.frm Page 89 Thursday, October 9, 1997 9:02 AM
Chapter 4. Linker Map File
P
art 2 – M

P
LIN

K

Linker Map File
As an option, a map file can be generated by the linker. The map file contains
three tables. The first table displays information about each section. The
information includes the name of the section, its type, beginning address,
whether the section resides in program or data memory, and its size in bytes.

There are four types of sections:

• code,

• initialized data (idata)

• uninitialized data (udata)

• initialized rom data (romdata).

The following table is an example of the the section table in a map file:

Section Info
 Section Type Address Location Size(Bytes)
--------- --------- --------- --------- ---------
Reset code 0x0000 program 0x0002
.cinit romdata 0x0021 program 0x0004
.code code 0x0023 program 0x0026
.udata udata 0x0020 data 0x0005

The second table in the map file provides information about the symbols in the
output module. The table is sorted by the symbol name and includes the
address of the symbol, whether the symbol resides in program or data
memory, whether the symbol has external or static linkage, and the name of
the file where defined. The following table is an example of the symbol table
sorted by symbol name in a map file:

Symbols - Sorted by Name
 Name Address Location Storage File
 --------- --------- --------- --------- ---------
 call_m 0x0026 program static
C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 loop 0x002e programstatic C:\MPASMV2\MUL8X8.ASM
 main 0x0024 programstatic C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 mpy 0x0028 programextern C:\MPASMV2\MUL8X8.ASM
 start 0x0023 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 H_byte 0x0022 data extern C:\MPASMV2\MUL8X8.ASM
 L_byte 0x0023 data extern C:\MPASMV2\MUL8X8.ASM
 count 0x0024 data static C:\MPASMV2\MUL8X8.ASM
 mulcnd 0x0020 data extern C:\MPASMV2\MUL8X8.ASM
 mulplr 0x0021 data extern C:\MPASMV2\MUL8X8.ASM
 1997 Microchip Technology Inc. DS33014F - page 89

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK4.frm Page 90 Thursday, October 9, 1997 9:02 AM
The third table in the map file provides the same information that the second
table provides, but it is sorted by symbol address rather than symbol name.
The following is an example of the symbol table table sorted by address in a
map file:

Symbols - Sorted by Address
 Name Address Location Storage File
 --------- --------- --------- --------- ---------
 start 0x0023 programstatic C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 main 0x0024 programstatic C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 call_m 0x0026 programstatic C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 mpy 0x0028 programextern C:\MPASMV2\MUL8X8.ASM
 loop 0x002e programstatic C:\MPASMV2\MUL8X8.ASM
 mulcnd 0x0020 data extern C:\MPASMV2\MUL8X8.ASM
 mulplr 0x0021 data extern C:\MPASMV2\MUL8X8.ASM
 H_byte 0x0022 data extern C:\MPASMV2\MUL8X8.ASM
 L_byte 0x0023 data extern C:\MPASMV2\MUL8X8.ASM
 count 0x0024 data static C:\MPASMV2\MUL8X8.ASM

Error Map File
If a linker error is generated, a complete map file can not be created.
However, if the –m option was supplied, an error map file will be created. The
error map file contains only section information --no symbol information is
provided. The error map file in conjunction with the error message should
provide enough context to determine why a section could not be allocated.
DS33014F - page 90  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FK5.frm Page 91 Thursday, October 9, 1997 9:02 AM
Chapter 5. Linker Processing
P
art 2 – M

P
LIN

K

A linker combines multiple input object modules into a single executable
output module. The input object modules may contain relocatable or absolute
sections of code or data which the linker will allocate into target memory. The
target memory architecture is described in a linker command file. This linker
command file provides a flexible mechanism for specifying blocks of target
memory and maps sections to the specified memory blocks. If the linker can
not find a block of target memory in which to allocate a section, an error is
generated. The linker combines like-named input sections into a single output
section. The linker allocation algorithm is described below.

Once the linker has allocated all sections from all input modules into target
memory it begins the process of symbol relocation. The symbols defined in
each input section have addresses dependant upon the beginning of their
sections. The linker adjusts the symbol addresses based upon the ultimate
location of their allocated sections.

After the linker has relocated the symbols defined in each input section, it
resolves external symbols. The linker attempts to match all external symbol
references with a corresponding symbol definition. If any external symbol
references do not have a corresponding symbol definition, an attempt is made
to locate the corresponding symbol definition in the input library files. If the
corresponding symbol definition is not found, an error is generated.

If the resolution of external symbols was successful, the linker then proceeds
to patch each section’s raw data. Each section contains a list of relocation
entries which associate locations in a section’s raw data with relocatable
symbols. The addresses of the relocatable symbols are patched into the raw
data. The process of relocating symbols and patching sections is described
below.

After the linker has processed all relocation entries, it generates the
executable output module.

Linker Allocation Algorithm
The linker allocates sections to allow maximal control over the location of
code and data, called “sections,” in target memory. There are four kinds of
allocations that the linker handles. Sections can be absolute or relocatable
(non-absolute), and they can be assigned target memory blocks in the linker
command file or they may be left unassigned. So, the following types of
allocations exist:

1. Absolute Assigned

2. Absolute Unassigned

3. Relocatable Assigned

4. Relocatable Unassigned
 1997 Microchip Technology Inc. DS33014F - page 91

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK5.frm Page 92 Thursday, October 9, 1997 9:02 AM
The linker performs allocation of absolute sections first, followed by
relocatable assigned sections, followed by relocatable unassigned sections.

Absolute Allocation
Absolute sections may be assigned to target memory blocks in the linker
command file. But, since the absolute section’s address is fixed, the linker
can only verify that if there is an assigned target memory block for an absolute
section, the target memory block has enough space and the absolute section
does not overlap other sections. If no target memory block is assigned to an
absolute section, the linker tries to find the one for it. If one can not be
located, an error is generated. Since absolute sections can only be allocated
at a fixed address, assigned and unassigned sections are performed in no
particular order.

Relocatable Allocation
Once all absolute sections have been allocated, the linker allocates
relocatable assigned sections. For relocatable assigned sections, the linker
checks the assigned target memory block to verify that there is space
available, otherwise it’s an error. The allocation of relocatable assigned
sections occurs in the order in which they were specified in the linker
command file.

After all relocatable assigned sections have been allocated, the linker
allocates relocatable unassigned sections. The linker starts with the largest
relocatable unassigned section and works its way down to the smallest
relocatable unassigned section. For each allocation, it chooses the target
memory block with the smallest available space that can accomodate the
section. By starting with the largest section and choosing the smallest
accomodating space, the linker increases the chances of being able to
allocate all the relocatable unassigned sections.

The stack is not a section but gets allocated along with the sections. The
linker command file may or may not assign the stack to a specific target
memory block. If the stack is assigned a target memory block, it gets allocated
just before the relocatable assigned sections are allocated. If the stack is
unassigned, then it gets allocated after the relocatable assigned sections and
before the other relocatable unassigned sections are allocated.

Relocation Example
The following example illustrates how the linker relocates sections. Suppose
the following source code fragment occurred in a file:

/* File: ref.c */
char var1; /* Line 1 */
void setVar1(void) { /* Line 2 */
 var1 = 0xFF; /* Line 3 */
}
DS33014F - page 92  1997 Microchip Technology Inc.

P
art 2 – M

P
LIN

K

Chapter 5. Linker Processing

33014F_0Book.book : 33014FK5.frm Page 93 Thursday, October 9, 1997 9:02 AM
Suppose this compiles into the following assembly instructions (note: this
example deliberately ignores any code generated by MPLAB-C to handle the
function’s entry and exit) :

0x0000 MOVLW 0xFF
0x0001 MOVLR ?? ; Need to patch with var1’s bank
0x0002 MOVWF ?? ; Need to patch with var1’s offset

When the compiler processes source line 1, it creates a symbol table entry for
the identifier var1 which has the following information:

Symbol[index] => name=var1, value=0, section=.data, class=extern

When the compiler processes source line 3, it generates two relocation
entries in the code section for the identifier symbol var1 since its final address
is unknown until link time. The relocation entries have the following
information:

Reloc[index] => address=0x0001 symbol=var1 type=bank
Reloc[index] => address=0x0002 symbol=var1 type=offset

Once the linker has placed every section into target memory, the final
addresses are known. Once all identifier symbols have their final addresses
assigned, the linker must patch all references to these symbols using the
relocation entries. In the example above, the updated symbol might now be
at location 0x125:

Symbol[index] => name=var1, value=0x125, section=.data,
class=extern

If the code section above were relocated to begin at address 0x50, the
updated relocation entries would now begin at location 0x51:

Reloc[index] => address=0x0051 symbol=var1 type=bank
Reloc[index] => address=0x0052 symbol=var1 type=offset

The linker will step through the relocation entries and patch their
corresponding sections. The final assembly equivalent output for the above
example would be:

0x0050 MOVLW 0xFF
0x0051 MOVLR 0x1 ; Patched with var1’s bank
0x0052 MOVWF 0x25 ; Patched with var1’s offset

Initialized Data
MPLINK performs special processing for input sections with initialized data.
Initialized data sections contain initial values (initializers) for the variables and
constants defined within them. Because the variables and constants within
an initialized data section reside in RAM, their data must be stored in non-
volatile program memory (ROM). For each initialized data section, the linker
creates a section in program memory. The data is moved by initializing code
(supplied with MPLAB-C and MPASM) to the proper RAM location(s) at
startup.
 1997 Microchip Technology Inc. DS33014F - page 93

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK5.frm Page 94 Thursday, October 9, 1997 9:02 AM
The names of the initializer sections created by the linker are the same as the
initialized data sections with a "_i" appended. For example, if an input object
module contains an initialized data section named ".idata_main.o" the linker
will create a section in program memory with the name ".idata_main.o_i"
which contains the data.

In addition to creating initializer sections, the linker creates a section named
".cinit" in program memory. The ".cinit" section contains a table with entries
for each initialized data section. Each entry is a triple which specifies where
in program memory the initializer section begins, where in data memory the
initialized data section begins, and how many bytes are in the initialized data
section. The boot code accesses this table and copies the data from ROM to
RAM.
DS33014F - page 94  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FK6.frm Page 95 Thursday, October 9, 1997 9:02 AM
Chapter 6. Terminology
P
art 2 – M

P
LIN

K

Terminology
Absolute Section: A section with a fixed absolute address which

can not be changed by the Linker.

Assigned Section: A section which has been assigned to a target
memory block in the linker command file. The
Linker allocates an assigned section into its
assigned target memory block.

COD: Common Object Description - a file format
definition for executable files created by Byte
Craft Limited of Waterloo, Canada.

COFF: Common Object File Format - a file format
definition for object/executable files.

Identifier: A function or variable name.

External Linkage: A function or variable has external linkage if it
can be accessed from outside the module in
which it is defined.

External Symbol: A symbol for an identifier which has external
linkage.

External Symbol Definition: An external symbol for a function or variable
defined in the current module.

External Symbol Reference: An external symbol which references a function
or variable defined outside the current module.

External Symbol Resolution: A process performed by the linker in which
external symbol defintions from all input
modules are collected in an attempt to update
all external symbol references. Any external
symbol references which do not get updated
cause a linker error to be reported.

Hex File: An ASCII file containing hexadecimal
addresses and values suitable for
programming a device.

Initialized Data: Data which is defined with an initial value. In
C, int myVar=5; defines a variable which will
reside in an initialized data section.

Internal Linkage: A function or variable has internal linkage if it
can not be accessed from outside the module
in which it is defined.
 1997 Microchip Technology Inc. DS33014F - page 95

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FK6.frm Page 96 Thursday, October 9, 1997 9:02 AM
Object File: A module which may contain relocatable code
or data and references to external code or
data. Typically, multiple object modules are
linked to form a single executable output.

Raw Data: The binary representation of code or data
associated with a section.

Relocatable Section: A section whose address in not fixed. The
linker assigns addresses to relocatable
sections through a process called relocation.

Relocation: A process performed by the linker in which
absolute addresses are assigned to relocatable
sections and all identifier symbol definitions
within the relocatable sections are updated to
their new addresses.

Section : An aggregate of code or data which has a
name, size, and address.

Shared Section: A section which resides in a shared (non-
banked) region of data RAM.

Stack: An area in data memory where function
arguments, return values, local variables, and
return addresses are stored.

Symbol: A symbol is a general purpose mechanism for
describing the various pieces which comprise a
program. These pieces include function
names, variable names, section names, file
names, struct/enum/union tag names, etc.

Unassigned Section: A section which has not been assigned to a
specific target memory block in the linker
command file. The linker must find a target
memory block in which to allocate an
unassigned section.

Uninitialized Data: Data which is defined without an initial value.
In C, int myVar; defines a variable which will
reside in an uninitialized data section.
DS33014F - page 96  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FLt.frm Page 97 Thursday, October 9, 1997 9:02 AM
Part 3 – MPLIB
P
art 3 – M

P
LIB

Chapter 1. Librarian Fundamentals . 99
 1997 Microchip Technology Inc. DS33014F - page 97

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FLt.frm Page 98 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 98  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014FL1.frm Page 99 Thursday, October 9, 1997 9:02 AM
Chapter 1. Librarian Fundamentals
P
art 3 – M

P
LIB

A librarian manages the creation and modification of library files. A library file
is simply a collection of object modules that are stored in a single file. There
are several reasons for creating library files:

• Libraries make linking easier. Since library files can contain many
object files, the name of a library file can be used instead of the names
of many separate object files when linking.

• Libraries help keep code small. Since a linker only uses the required
object files contained in a library, not all object files which are
contained in the library necessarily wind up in the linker's output
module.

• Libraries make projects more maintainable. If a library is included in a
project, the addition or removal of calls to that library will not require a
change to the link process.

• Libraries help to convey the purpose of a group of object modules.
Since libraries can group together several related object modules, the
purpose of a library file is usually more understandable than the
purpose of its individual object modules. For example, the purpose of
a file named 'math.lib' is more apparent than the purpose of 'power.o',
'ceiling.o', and 'floor.o'.

MPLIB is a librarian for use with COFF object modules created using either
MPASM v2.0, MPASMWIN v2.0, or MPLAB-C v2.0 or later.

Usage
mplib [/q] /{ctdrx} LIBRARY [MEMBER...]

 options:

/c create library; creates a new LIBRARY with the listed
MEMBER(s)

/t list members; prints a table showing the names of the
members in the LIBRARY

/d delete member; deletes MEMBER(s) from the LIBRARY; if no
MEMBER is specified the LIBRARY is not
altered

/r add/replace member; if MEMBER(s) exist in the LIBRARY, then they
are replaced, otherwise MEMBER is appended
to the end of the LIBRARY

/x extract member; if MEMBER(s) exist in the LIBRARY, then they
are extracted. If no MEMBER is specified, all
members will be extracted

/q quiet mode; no output is displayed
 1997 Microchip Technology Inc. DS33014F - page 99

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014FL1.frm Page 100 Thursday, October 9, 1997 9:02 AM
Usage Examples
Suppose a library named ’dsp.lib’ is to be created from three object modules
named ’fft.o’, ’fir.o’, and ’iir.o’. The following command line would produce the
desired results:

mplib /c dsp.lib fft.o fir.o iir.o

To display the names of the object modules contained in a library file names
’dsp.lib’, the following command line would be appropriate:

mplib /t dsp.lib

Tips
MPLIB creates library files that may contain only a single external definition
for any symbol. Therefore, if two object modules define the same external
symbol, MPLIB will generate an error if both object modules are added to the
same library file.

To minimize the code and data space which results from linking with a library
file, the library’s member object modules should be as small as possible.
Creating object modules that contain only a single function can significantly
reduce code space.

Error Reporting
MPLIB detects the following sources of error and reports them:

Parse Errors
invalid switch. An unsupported switch was specified. Refer to Usage for a
list of supported command line options.

library filename is required. All commands require a library filename. All
library filenames must end with ’.lib’.

invalid object filename. All object filenames must end with ’.o’.

Library File Errors
Please refer to the documentation on MPLINK for error messages associated
with library files.

COFF File Errors
Please refer to the documentation on MPLINK for error messages associated
with COFF files.
DS33014F - page 100  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_A.frm Page 101 Thursday, October 9, 1997 9:02 AM
Appendix A. Hex File Formats
Introduction
MPASM is capable of generating several different hex file formats.

Highlights
• Intel Hex Format (INHX8M) (for standard programmers)

• Intel Split Hex Format (INHX8S) (for ODD/EVEN ROM programmers)

• Intel Hex 32 Format (INHX32) (for 16-bit core programmers)

Hex File Formats

Intel Hex Format (.HEX)
This format produces one 8-bit hex file with a low byte, high byte combination.
Since each address can only contain 8 bits in this format, all addresses are
doubled. This file format is useful for transferring PICmicro series code to
PRO MATEII, PICSTART and third party PICmicro programmers.

Each data record begins with a 9 character prefix and ends with a 2 character
checksum. Each record has the following format:

:BBAAAATTHHHH....HHHCC

where

BB - is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA - is a four digit hexadecimal address representing the starting address
of the data record.

TT - is a two digit record type record type that will always be ‘00’ except for
the end-of-file record, which will be ‘01’.

HH - is a two digit hexadecimal data byte, presented in low byte, high byte
combinations.

CC - is a two digit hexadecimal checksum that is the two’s complement of the
sum of all preceding bytes in the record.
 1997 Microchip Technology Inc. DS33014F - page 101

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_A.frm Page 102 Thursday, October 9, 1997 9:02 AM
Example

<file_name>.HEX

:1000000000000000000000000000000000000000F0
:0400100000000000EC
:100032000000280040006800A800E800C80028016D
:100042006801A9018901EA01280208026A02BF02C5
:10005200E002E80228036803BF03E803C8030804B8
:1000620008040804030443050306E807E807FF0839
:06007200FF08FF08190A57
:00000001FF

8-Bit Split Format (.HXL/.HXH)
The split 8-bit file format produces two output files: .HXL and .HXH. The
format is the same as the normal 8-bit format, except that the low bytes of the
data word are stored in the .HXL file, and the high bytes of the data word are
stored in the .HXH file, and the addresses are divided by two. This is used to
program 16-bit words into pairs of 8-bit EPROMs, one file for Low Byte, one
file for High Byte.

Example

<file_name>.HXL

:0A0000000000000000000000000000F6
:1000190000284068A8E8C82868A989EA28086ABFAA
:10002900E0E82868BFE8C8080808034303E8E8FFD0
:03003900FFFF19AD
:00000001FF

<file_name>.HXH

:0A0000000000000000000000000000F6
:1000190000000000000000010101010102020202CA
:100029000202030303030304040404050607070883
:0300390008080AAA
:00000001FF
DS33014F - page 102  1997 Microchip Technology Inc.

Appendix A. Hex File Formats

33014F_0Book.book : 33014F_A.frm Page 103 Thursday, October 9, 1997 9:02 AM
32-Bit Hex Format (.HEX)
The extended 32-bit address hex format is similar to the hex 8 format
described above, except that the extended linear address record is output
also to establish the upper 16 bits of the data address. This is mainly used for
16-bit core devices since their addressable program memory exceeds
32 k words.

Each data record begins with a 9 character prefix and ends with a 2 character
checksum. Each record has the following format:

:BBAAAATTHHHH....HHHCC

where

BB - is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA - is a four digit hexadecimal address representing the starting address
of the data record.

TT - is a two digit record type:

00 - Data record

01 - End of File record

02 - Segment address record

04 - Linear address record

HH - is a two digit hexadecimal data byte, presented in low byte, high byte
combinations.

CC - is a two digit hexadecimal checksum that is the two’s complement of the
sum of all preceding bytes in the record.
 1997 Microchip Technology Inc. DS33014F - page 103

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_A.frm Page 104 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 104  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_B.frm Page 105 Thursday, October 9, 1997 9:02 AM
Appendix B. On-Line Support
Introduction
Microchip provides two methods of on-line support. These are the Microchip
BBS and the Microchip World Wide Web (WWW) site.

Use Microchip’s Bulletin Board Service (BBS) to get current information and
help about Microchip products. Microchip provides the BBS communication
channel for you to use in extending your technical staff with microcontroller
and memory experts.

To provide you with the most responsive service possible, the Microchip
systems team monitors the BBS, posts the latest component data and
software tool updates, provides technical help and embedded systems
insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and
information easily available to customers. To view the site, the user must
have access to the Internet and a web browser, such as Netscape or
Microsoft Explorer. Files are also available for FTP download from our FTP
site.

Connecting to the Microchip Internet Web Site
The Microchip web site is available by using your favorite Internet browser to
attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Datasheets, Application
Notes, User’s Guides, Articles and Sample Programs.

A variety of Microchip specific business information is also available, including
listings of Microchip sales offices, distributors and factory representatives.
Other data available for consideration is:

• Latest Microchip Press Releases

• Technical Support Section with Frequently Asked Questions

• Design Tips

• Device Errata

• Job Postings

• Microchip Consultant Program Member Listing

• Links to other useful web sites related to Microchip Products
 1997 Microchip Technology Inc. DS33014F - page 105

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_B.frm Page 106 Thursday, October 9, 1997 9:02 AM
Connecting to the Microchip BBS
Connect worldwide to the Microchip BBS using either the Internet or the
CompuServe communications network.

Internet: You can telnet or ftp to the Microchip BBS at the address
mchipbbs.microchip.com

CompuServe Communications Network: In most cases, a local call is your
only expense. The Microchip BBS connection does not use
CompuServe membership services, therefore

You do not need CompuServe membership to join Microchip’s BBS.

There is no charge for connecting to the BBS, except for a toll charge to the
CompuServe access number, where applicable. You do not need to be a
CompuServe member to take advantage of this connection (you never
actually log in to CompuServe).

The procedure to connect will vary slightly from country to country. Please
check with your local CompuServe agent for details if you have a problem.
CompuServe service allow multiple users at baud rates up to 14400 bps.

The following connect procedure applies in most locations.

1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the
normal CompuServe setting which is 7E1.

2. Dial your local CompuServe access number.

3. Depress <Enter ↵> and a garbage string will appear because
CompuServe is expecting a 7E1 setting.

4. Type +, depress <Enter ↵> and Host Name: will appear.

5. Type MCHIPBBS, depress <Enter ↵> and you will be connected to the
Microchip BBS.

In the United States, to find the CompuServe phone number closest to you,
set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or
(800) 331-7166 for 9600-14400 baud connection. After the system responds
with Host Name:, type NETWORK, depress <Enter ↵> and follow
CompuServe’s directions.

For voice information (or calling from overseas), you may call (614) 723-1550
for your local CompuServe number.

Using the Bulletin Board
The bulletin board is a multifaceted tool. It can provide you with information on
a number of different topics.

• Special Interest Groups

• Files

• Mail

• Bug Lists
DS33014F - page 106  1997 Microchip Technology Inc.

Appendix B. On-Line Support

33014F_0Book.book : 33014F_B.frm Page 107 Thursday, October 9, 1997 9:02 AM
Special Interest Groups
Special Interest Groups, or SIGs as they are commonly referred to, provide
you with the opportunity to discuss issues and topics of interest with others
that share your interest or questions. SIGs may provide you with information
not available by any other method because of the broad background of the
PICmicro MCU user community.

There are SIGs for most Microchip systems and device families.These groups
are monitored by the Microchip staff.

Files
Microchip regularly uses the Microchip BBS to distribute technical information,
application notes, source code, errata sheets, bug reports, and interim
patches for Microchip systems software products. Users can contribute files
for distribution on the BBS. For each SIG, a moderator monitors, scans, and
approves or disapproves files submitted to the SIG. No executable files are
accepted from the user community in general to limit the spread of computer
viruses.

Mail
The BBS can be used to distribute mail to other users of the service. This is
one way to get answers to your questions and problems from the Microchip
staff, as well as keeping in touch with fellow Microchip users worldwide.

Consider mailing the moderator of your SIG, or the SYSOP, if you have ideas
or questions about Microchip products, or the operation of the BBS.

Software Releases
Software products released by Microchip are referred to by version numbers.
Version numbers use the form:

xx.yy.zz

Where xx is the major release number, yy is the minor number, and zz is the
intermediate number.

Intermediate Release
Intermediate released software represents changes to a released software
system and is designated as such by adding an intermediate number to the
version number. Intermediate changes are represented by:

• Bug Fixes

• Special Releases

• Feature Experiments
 1997 Microchip Technology Inc. DS33014F - page 107

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_B.frm Page 108 Thursday, October 9, 1997 9:02 AM
Intermediate released software does not represent our most tested and stable
software. Typically, it will not have been subject to a thorough and rigorous
test suite, unlike production released versions. Therefore, users should use
these versions with care, and only in cases where the features provided by an
intermediate release are required.

Intermediate releases are primarily available through the BBS.

Production Release
Production released software is software shipped with tool products. Example
products are PRO MATE II, PICSTART, and PICMASTER. The Major number
is advanced when significant feature enhancements are made to the product.
The minor version number is advanced for maintenance fixes and minor
enhancements. Production released software represents Microchip’s most
stable and thoroughly tested software.

There will always be a period of time when the Production Released software
is not reflected by products being shipped until stocks are rotated. You should
always check the BBS or the WWW for the current production release.

Systems Information and Upgrade Hot Line
The Systems Information and Upgrade Line provides system users a listing
of the latest versions of all of Microchip’s development systems software
products. Plus, this line provides information on how customers can
receive any currently available upgrade kits. The Hot Line Numbers are:
1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302 for the
rest of the world.

These phone numbers are also listed on the “Important Information” sheet
that is shipped with all development systems. The hot line message is
updated whenever a new software version is added to the Microchip BBS, or
when a new upgrade kit becomes available.

DS33014F - page 108  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_C.frm Page 109 Thursday, October 9, 1997 9:02 AM
Appendix C. MPASM Errors/Warnings/Messages
The following messages are produced by MPASM. These messages always
appear in the listing file directly above each line in which the error occurred.

The messages are stored in the error file (.ERR) if no MPASM options are
specified. If the /e- option is used (turns error file off), then the messages will
appear on the screen. If the /q (quiet mode) option is used with the /e-, then
the messages will not display on the screen or in an error file. The messages
will still appear in the listing file.

Errors
101 ERROR:

User error, invoked with the ERROR directive.

102 Out of memory

Not enough memory for macros, #defines or internal processing.
Eliminate any TSR’s, close any open applications, and try assembling
the file again. If this error was obtained using the Real Mode DOS
executable, try using either the Windows version (MPASMWIN) or
DPMI version (MPASM_DP)

103 Symbol table full

No more memory available for the symbol table. Eliminate any TSR’s,
close any open applications, and try assembling the file again. If this
error was obtained using the Real Mode DOS executable, try using
either the Windows version (MPASMWIN) or DPMI version
(MPASM_DP)

 104 Temp file creation error

Could not create a temporary file. Check the available disk space.

105 Cannot open file

Could not open a file. If it is a source file, the file may not exist. If it is
an output file, the old version may be write protected.

106 String substitution too complex

Too much nesting of #defines.

107 Illegal digit

An illegal digit in a number. Valid digits are 0-1 for binary, 0-7 for
octal, 0-9 for decimal, and 0-9, a-f, and A-F for hexadecimal.

108 Illegal character

An illegal character in a label. Valid characters for labels are
alphabetic (a..f, A..F), numeric (0-9), the underscore (_), and the
question mark (?). Labels may not begin with a numeric.
 1997 Microchip Technology Inc. DS33014F - page 109

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_C.frm Page 110 Thursday, October 9, 1997 9:02 AM
109 Unmatched (

An open parenthesis did not have a matching close parenthesis. For
example, “DATA (1+2”.

110 Unmatched)

An close parenthesis did not have a matching open parenthesis. For
example, “DATA 1+2)”.

111 Missing symbol

An EQU or SET statement did not have a symbol to assign the value
to.

112 Missing operator

An arithmetic operator was missing from an expression. For example,
“DATA 1 2”.

113 Symbol not previously defined

A symbol was referenced that has not yet been defined. Only
addresses may be used as forward references. Constants and
variables must be declared before they are used.

114 Divide by zero

Division by zero encountered during an expression evaluation.

115 Duplicate label

A label was declared as a constant (e.g. with the EQU or CBLOCK
directive) in more than one location.

116 Address label duplicated or different in second pass

The same label was used in two locations. Alternately, the label was
used only once but evaluated to a different location on the second
pass. This often happens when users try to write page-bit setting
macros that generate different numbers of instructions based on the
destination.

117 Address wrapped around 0

The location counter can only advance to FFFF. After that, it wraps
back to 0.

118 Overwriting previous address contents

Code was previously generated for this address.

119 Code too fragmented

The code is broken into too many pieces. This error is very rare, and
will only occur in source code that references addresses above 32K
(including configuration bits).

120 Call or jump not allowed at this address

A call or jump cannot be made to this address. For example, CALL
destinations on the PIC16C5x family must be in the lower half of the
page.
DS33014F - page 110  1997 Microchip Technology Inc.

Appendix C. MPASM Errors/Warnings/Messages

33014F_0Book.book : 33014F_C.frm Page 111 Thursday, October 9, 1997 9:02 AM
121 Illegal label

Labels are not allowed on certain directive lines. Simply put the label
on its own line, above the directive. Also, HIGH, LOW, PAGE, and
BANK are not allowed as labels.

122 Illegal opcode

Token is not a valid opcode.

123 Illegal directive

Directive is not allowed for the selected processor; for example, the
_ _IDLOCS directive on the PIC17C42.

124 Illegal argument

An illegal directive argument; for example, “LIST STUPID”.

125 Illegal condition

A bad conditional assembly. For example, an unmatched ENDIF.

126 Argument out of range

Opcode or directive argument out of the valid range; for example,
“TRIS 10”.

127 Too many arguments

Too many arguments specified for a macro call.

128 Missing argument(s)

Not enough arguments for a macro call or an opcode.

129 Expected

Expected a certain type of argument. The expected list will be
provided.

130 Processor type previously defined

A different family of processor is being selected.

131 Processor type is undefined

Code is being generated before the processor has been defined.
Note that until the processor is defined, the opcode set is not known.

132 Unknown processor

The selected processor is not a valid processor.

133 Hex file format INHX32 required

An address above 32K was specified. For example, specifying the
configuration bits on the PIC17CXX family.

134 Illegal hex file format

An illegal hex file format was specified in the LIST directive.

135 Macro name missing

A macro was defined without a name.
 1997 Microchip Technology Inc. DS33014F - page 111

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_C.frm Page 112 Thursday, October 9, 1997 9:02 AM
136 Duplicate macro name

A macro name was duplicated.

137 Macros nested too deep

The maximum macro nesting level was exceeded.

138 Include files nested too deep

The maximum include file nesting level was exceeded.

139 Maximum of 100 lines inside WHILE-ENDW

A WHILE-ENDW can contain at most 100 lines.

140 WHILE must terminate within 256 iterations

A WHILE-ENDW loop must terminate within 256 iterations. This is to
prevent infinite assembly.

141 WHILEs nested too deep

The maximum WHILE-ENDW nesting level was exceeded.

142 IFs nested too deep

The maximum IF nesting level was exceeded.

143 Illegal nesting

Macros, IF’s and WHILE’s must be completely nested; they cannot
overlap. If you have an IF within a WHILE loop, the ENDIF must come
before the ENDW.

144 Unmatched ENDC

ENDC found without a CBLOCK.

145 Unmatched ENDM

ENDM found without a MACRO definition.

146 Unmatched EXITM

EXITM found without a MACRO definition.

147 Directive not allowed when generating an object file

The ORG directive is not allowed when generating an object file.
Instead, declare a data or code section, specifying the address if
necessary.

148 Expanded source line exceeded 200 characters

The maximum length of a source line, after #DEFINE and macro
parameter substitution, is 200 characters. Note that #DEFINE
substitution does not include comments, but macro parameter
substitution does.

149 Directive only allowed when generating an object file section.

Certain directives, such as GLOBAL and EXTERN, only have
meaning when an object file is generated. They cannot be used when
generating absolute code.
DS33014F - page 112  1997 Microchip Technology Inc.

Appendix C. MPASM Errors/Warnings/Messages

33014F_0Book.book : 33014F_C.frm Page 113 Thursday, October 9, 1997 9:02 AM
150 Labels must be defined in a code or data section when making
an object file

When generating an object file, all data and code address labels must
be defined inside a data or code section. Symbols defined by the
EQU and SET directives can be defined outside of a section.

151 Operand contains unresolvable labels or is too complex

When generating an object file, operands must be of the form
[HIGH|LOW]([<relocatable address label>]+[<offset>]).

152 Executable code and data must be defined in an appropriate
section

When generating an object file, all executable code and data
declarations must be placed within appropriate sections.

153 Page or Bank bits cannot be evaluated for the operand

The operand of a PAGESEL, BANKSEL or BANKISEL directive must
be of the form <relocatable address label> or <constant>.

154 Each object file section must be contiguous

Object file sections, except UDATA_OVR sections, cannot be
stopped and restarted within a single source file. To resolve this
problem, either name each section with its own name or move the
code and data declarations such that each section is contiguous. This
error will also be generated if two sections of different types are given
the same name.

155 All overlayed sections of the same name must have the same
starting address

If multiple UDATA_OVR sections with the same name are declared,
they must all have the same starting address.

156 Operand must be an address label

When generating object files, only address labels in code or data
sections may be declared global. Variables declared by the SET or
EQU directives may not be exported.

157 UNKNOWN ERROR

An error has occurred which MPASM cannot understand. It is not any
of the errors described in this appendix. Contact your Microchip Field
Application Engineer (FAE) if you cannot debug this error.

Warnings
201 Symbol not previously defined

Symbol being #undefined was not previously defined.

202 Argument out of range. Least significant bits used.

Argument did not fit in the allocated space. For example, literals must
be 8 bits.
 1997 Microchip Technology Inc. DS33014F - page 113

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_C.frm Page 114 Thursday, October 9, 1997 9:02 AM
203 Found opcode in column 1.

An opcode was found in column one, which is reserved for labels.

204 Found pseudo-op in column 1.

A pseudo-op was found in column one, which is reserved for labels.

205 Found directive in column 1.

A directive was found in column one, which is reserved for labels.

206 Found call to macro in column 1.

A macro call was found in column one, which is reserved for labels.

207 Found label after column 1.

A label was found after column one, which is often due to a
misspelled opcode.

208 Label truncated at 32 characters.

Maximum label length is 32 characters.

209 Missing quote

A text string or character was missing a quote. For example,
“DATA ‘a”.

210 Extra “,”

An extra comma was found at the end of the line.

211 Extraneous arguments on the line.

Extra arguments were found on the line. These warnings should be
investigated, since they are often indications of the free-format parser
interpreting something in a manner other than was intended (try
assembling “OPTION EQU 0x81” with “LIST FREE”).

212 Expected

Expected a certain type of argument. A description should be
provided. For the warning, an assumption is made about the
argument.

213 The EXTERN directive should only be used when making
a .O file.

The EXTERN directive only has meaning if an object file is being
created. This warning has been superceded by Error 149.

214 Unmatched (

An unmatched parenthesis was found. The warning is used if the
parenthesis is not used for indicating order of evaluation.

215 Processor superceded by command line. Verify processor
symbol.

The processor was specified on the command line as well as in the
source file. The command line has precedence.
DS33014F - page 114  1997 Microchip Technology Inc.

Appendix C. MPASM Errors/Warnings/Messages

33014F_0Book.book : 33014F_C.frm Page 115 Thursday, October 9, 1997 9:02 AM
216 Radix superceded by command line.

The radix was specified on the command line as well as in the source
file. The command line has precedence.

217 Hex file format specified on command line.

The hex file format was specified on the command line as well as in
the source file. The command line has precedence.

218 Expected DEC, OCT, HEX. Will use HEX

Bad radix specification.

219 Invalid RAM location specified.

If the _ _MAXRAM and _ _BADRAM directives are used, this warning
flags use of any RAM locations declared as invalid by these
directives. Note that the provided header files include _ _MAXRAM
and _ _BADRAM for each processor.

220 Address exceeds maximum range for this processor.

A ROM location was specified that exceeds the processor’s memory
size.

221 Invalid message number

The message number specified for displaying or hiding is not a valid
message number.

222 Error messages cannot be disabled.

Error messages cannot be disabled with the ERRORLEVEL
command.

223 Redefining processor

The selected processor is being reselected by the LIST or
PROCESSOR directive.

224 Use of this instruction is not recommended.

Use of the TRIS and OPTION instructions is not recommended for a
PIC16CXX device.

225 Invalid label in operand

Operand was not a valid address. For example, if the user tried to
issue a CALL to a MACRO name.

226 UNKNOWN WARNING

A warning has occurred which MPASM cannot understand. It is not
any of the warnings described in this appendix. Contact your
Microchip Field Application Engineer (FAE) if you cannot debug this
warning.
 1997 Microchip Technology Inc. DS33014F - page 115

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_C.frm Page 116 Thursday, October 9, 1997 9:02 AM
Messages
301 MESSAGE:

User message, invoked with the MESSG directive.

302 Register in operand not in bank 0. Ensure that bank bits are
correct.

Register address was specified by a value that included the bank bits.
For example, RAM locations in the PIC16CXX are specified with 7
bits in the instruction and one or two bank bits.

303 Program word too large. Truncated to core size.

Program words for the PIC16C5X may only be 12-bits; program
words for the PIC16CXX may only be 14-bits.

304 ID Locations value too large. Last four hex digits used.

Only four hex digits are allowed for the ID locations.

305 Using default destination of 1 (file).

If no destination bit is specified, the default is used.

306 Crossing page boundary – ensure page bits are set.

Generated code is crossing a page boundary.

307 Setting page bits.

Page bits are being set with the LCALL or LGOTO pseudo-op.

308 Warning level superceded by command line value.

The warning level was specified on the command line as well as in
the source file. The command line has precedence.

309 Macro expansion superceded by command line.

Macro expansion was specified on the command line as well as in the
source file. The command line has precedence.

310 Superceding current maximum RAM and RAM map.

The _ _MAXRAM directive has been used previously.

311 Operand of HIGH operator was larger than H’FFFF’.

The HIGH operator will return the value of the bits 8 through 15 of the
operator, shifted down to the lower byte. Any bits above bit 15 are
ignored. The expression HIGH (H’123456’) evaluates to H’34’.

312 Page or Bank selection not needed for this device. No code
generated.

If a device contains only one ROM page or RAM bank, no page or
bank selection is required, and any PAGESEL, BANKSEL, or
BANKISEL directives will not generate any code.
DS33014F - page 116  1997 Microchip Technology Inc.

Appendix C. MPASM Errors/Warnings/Messages

33014F_0Book.book : 33014F_C.frm Page 117 Thursday, October 9, 1997 9:02 AM
313 CBLOCK constants will start with a value of 0.

If the first CBLOCK in the source file has no starting value specified,
this message will be generated.

314 UNKNOWN MESSAGE

A message has occurred which MPASM cannot understand. It is not
any of the messages described in this appendix. Contact your
Microchip Field Application Engineer (FAE) if you cannot debug this
message.
 1997 Microchip Technology Inc. DS33014F - page 117

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_C.frm Page 118 Thursday, October 9, 1997 9:02 AM
Notes:
DS33014F - page 118  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_D.frm Page 119 Thursday, October 9, 1997 9:02 AM
Appendix D. MPLINK Errors/Warnings
Parse Errors
Invalid attributes for memory in ’cmdfile:line’. A CODEPAGE,
DATABANK, or SHAREBANK directive does not specify a NAME, START, or
END attribute; or another attribute is specified which is not valid.

Invalid attributes for STACK in ’cmdfile:line’. A STACK directive does not
specify a SIZE attribute, or another attribute is specified which is not valid.

Invalid attributes for SECTION in ’cmdfile:line’. A SECTION directive must
have a NAME and either a RAM or ROM attribute.

Could not open ’cmdfile’. A linker command file could not be opened.
Check that the file exists, is in the current search path, and is readable.

Multiple inclusion of linker command file ’cmdfile’. A linker command file
can only be included once. Remove multiple INCLUDE directives to the
referenced linker command file.

Illegal <libpath> for LIBPATH in ’cmdfile:line’. The ’libpath’ must be a
semicolon delimited list of directories. Enclose directory name which have
embedded spaces in double quotes.

Illegal <lkrpath> for LKRPATH in ’cmdfile:line’. The ’lkrpath’ must be a
semicolon delimited list of directories. Enclose directory names which have
embedded spaces in double quotes.

Illegal <filename> for FILES in ’cmdfile:line’. An object or library filename
must end with ’.o’ or ’.lib’ respectively.

Illegal <filename> for INCLUDE in ’cmdfile:line’. A linker command
filename must end with ’.lkr’.

Unrecognized input in ’ cmdfile:line’. All statements in a linker command
file must begin with a directive keyword or the comment delimiter ’//’.

-o switch requires <filename>. A COFF output filename must be specified.
For example: -o main.out

-m switch requires <filename>. A map filename must be specified. For
example: -m main.map

-n switch requires <length>. The number of source lines per listing file page
must be specified. A ’length’ of zero will suppress pagination of the listing file.

-L switch requires <pathlist>. A semicolon delimited path must be
specified. Enclose directory names containing embedded spaces with double
quotes. For example: -L ..;c:\mplab\lib;"c:\program files\mplink"

-K switch requires <pathlist>. A semicolon delimited path must be
specified. Enclose directory names containing embedded spaces with double
quotes. For example: -L ..;c:\mplab\lib;"c:\program files\mplink"
 1997 Microchip Technology Inc. DS33014F - page 119

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_D.frm Page 120 Thursday, October 9, 1997 9:02 AM
unknown switch: ’cmdline token’. An unrecognized command line switch
was supplied. Refer to the Usage documentation for the list of supported
switches.

Linker Errors
Memory ’memName’ overlaps memory ’memName’. All CODEPAGE
blocks must specify unique memory ranges which do not overlap. Similarly
DATABANK and SHAREBANK blocks may not overlap.

Duplicate definition of memory ’memName’. All CODEPAGE and
DATABANK directives must have unique NAME attributes.

Multiple map files declared: ’File1’, ’File2’. The –m <mapfile> switch was
specified more than once.

Multiple output files declared: ’File1’, ’File2’. The –o <outfile> switch was
specified more than once.

Mutliple inclusion of object file ’File1’, ’File2’. An object file has been
included multiple times either on the command line or with a FILES directive
in a linker command file. Remove the multiple references.

Overlapping definitions of SHAREBANK ’memName’. A SHAREBANK
directive specifies a range of addresses that overlap a previous definition.
Overlaps are not permitted.

Inconsistent length definitions of SHAREBANK ’memName’. All
SHAREBANK definitions which have the same NAME attribute must be of
equal length.

Multiple STACK definitions. A STACK directive occurs more than once in
the linker command file or included linker command files. Remove the
multiple STACK directives.

Undefined DATABANK/SHAREBANK 'memName' for STACK.

Duplicate definitions of SECTION ’secName’. Each SECTION directive
must have unique NAME attributes. Remove duplicate definitions.

Undefined CODEPAGE ’memName’ for SECTION ’secName’. A SECTION
directive with a ROM attribute refers to a memory block which has not been
defined. Add a CODEPAGE directive to the linker command file for the
undefined memory block.

Undefined DATABANK/SHAREBANK ’memName’ for SECTION
’secName’. A SECTION directive with a RAM attribute refers to a memory
block that has not been defined. Add a DATABANK or SHAREBANK
directive to the linker command file for the undefined memory block.

No input object files specified. At least one object module must be
specified either on the command line or in the linker command file using the
FILES directive.

Could not find file ’File’. An input object or library file was specified which
does not exist, or cannot be found in the linker path.
DS33014F - page 120  1997 Microchip Technology Inc.

Appendix D. MPLINK Errors/Warnings

33014F_0Book.book : 33014F_D.frm Page 121 Thursday, October 9, 1997 9:02 AM
Processor types do not agree across all input files. Each object module
and library file specifies a processor type or a processor family. All input
modules processor types or families must match.

ROM width of ’xx’ not supported. An input module specifies a processor
whose ROM width is not 12, 14, or 16 bits wide.

Unknown section type for ’secName’ in file ’File’. An input object or library
module is not of the proper file type or it may be corrupted.

Section types for ’secName’ do not match across input files. A section
with the name ’secName’ may occur in more than one input file. All input files
which have this section must also have the same section type.

Section ’secName’ is absolute but occurs in more than one input file. An
absolute section with the name ’secName’ may only occur in a single input
file. Relocatable sections with the same name may occur in multiple input
files. Either remove the multiple absolute sections in the source files or use
relocatable sections instead.

Section share types for ’secName’ do not match across input files. A
section with the name ’secName’ occurs in more than one input file, however,
in some it is marked as a shared section and in some it is not. Change the
section’s share type in the source files and rebuild the object modules.

Section ’secName’ contains code and can not have a ’RAM’ memory
attribute specified in the linker command file. Use only the ROM attribute
when defining the section in the linker command file.

Section ’secName’ contains uninitialized data and can not have a ’ROM’
memory attribute specified in the linker command file. Use only the RAM
attribute when defining the section in the linker command file.

Section ’secName’ contains initialized data and can not have a ’ROM’
memory attribute specified in the linker command file. Use only the RAM
attribute when defining the section in the linker command file.

Section ’secName’ contains initialized rom data and can not have a
’RAM’ memory attribute specified in the linker command file. Use only
the ROM attribute when defining the section in the linker command file.

Section ’secName’ has a memory ’memName’ which can not fit the
section. Section ’secName’ length=’0xHHHH’. The memory which was
assigned to the section in the linker command file either does not have space
to fit the section, or the section will overlap another section. Use the –m
<mapfile> switch to generate an error map file. The error map will show the
sections which were allocated prior to the error.

Section ’secName’ has a memory ’memName’ which is not defined in the
linker command file. Add a CODEPAGE, DATABANK, or SHAREBANK
directive for the undefined memory to the linker command file.

Section ’secName’ can not fit the section. Section ’secName’
length=’0xHHHH’. A section which has not been assigned to a memory in
the linker command file can not be allocated. Use the –m <mapfile> switch to
generate an error map file. The error map will show the sections which were
 1997 Microchip Technology Inc. DS33014F - page 121

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_D.frm Page 122 Thursday, October 9, 1997 9:02 AM
allocated prior to the error. More memory must be made available by adding
a CODEPAGE, SHAREBANK, or DATABANK directive, or by removing the
PROTECTED attribute, or the number of input sections must be reduced.

Section ’secName’ has a memory ’memName’ which can not fit the
absolute section. Section ’secName’ start=0xHHHH, length=0xHHHH.
The memory which was assigned to the section in the linker command file
either does not have space to fit the section, or the section will overlap
another section. Use the –m <mapfile> switch to generate an error map file.
The error map will show the sections which were allocated prior to the error.

Section ’secName’ can not fit the absolute section. Section ’secName’
start=0xHHHH, length=0xHHHH. A section which has not been assigned to
a memory in the linker command file can not be allocated. Use the –m
<mapfile> switch to generate an error map file. The error map will show the
sections which were allocated prior to the error. More memory must be made
available by adding a CODEPAGE, SHAREBANK, or DATABANK directive,
or by removing the PROTECTED attribute, or the number of input sections
must be reduced.

Symbol ’symName’ has multiple definitions. A symbol may only be
defined in a single input module.

Could not resolve symbol ’symName’ in file ’File’. The symbol 'symName'
is an external reference. No input module defines this symbol. If the symbol
is defined in a library module, ensure that the library module is included on the
command line or in the linker command file using the FILES directive.

Could not open map file ’File’ for writing. Verify that if 'File' exists, it is not
a read-only file.

Library File Errors
Symbol ’name’ has multiple external definitions. A symbol may only be
defined once in a library file.

Could not open library file ’filename’ for reading. Verify that 'filename'
exists and can be read.

Could not read archive magic string in library file ’filename’. The file is
not a valid library file or it may be corrupted.

File ’filename’ is not a valid library file. Library files must end with '.lib'.

Library file ’filename’ has a missing member object file. The file not a
valid object file or it may be corrupted.

Could not build member ’memberName’ in library file ’filename’. The file
is not a valid library file or it is corrupted.

Could not open library file ’filename’ for writing. Verify that if 'filename'
exists, it is not read-only.

Could not write archive magic string in library file ’filename’. The file may
be corrupted

Could not write member header for ’memberName’ in library file
’filename’. The file may be corrupted
DS33014F - page 122  1997 Microchip Technology Inc.

Appendix D. MPLINK Errors/Warnings

33014F_0Book.book : 33014F_D.frm Page 123 Thursday, October 9, 1997 9:02 AM
’memberName’ is not a member of ’filename’. ’memberName’ can not be
extracted or deleted from a library unless it is a member of the library.

COFF File Errors
All COFF file errors indicate an internal error in the file’s contents. Please
contact Microchip support if any of the the following errors are generated:

• Unable to find section name in string table.

• Unable to find symbol name in string table.

• Unable to find aux_file name in string table.

• Could not find section name 'secName' in string table.

• Could not find symbol name 'symName' in string table.

• Coff file 'filename' symbol['xx'] has an invalid n_scnum.

• Coff file 'filename' symbol['xx'] has an invalid n_offset.

• Coff file 'filename' section['xx'] has an invalid s_offset.

• Coff file 'filename' has relocation entries but an empty symbol table.

• Coff file 'filename', section 'secName' reloc['xx'] has an invalid
r_symndx.

• Coff file 'filename', symbol['xx'] has an invalid x_tagndx or x_endndx.

• Coff file 'filename', section 'secName' line['xx'] has an invalid l_srcndx.

• Coff file 'filename', section 'secName' line['xx'] has an invalid l_fcnndx.

• Coff file 'filename', cScnHdr.size() != cScnNum.size().

• Could not open Coff file 'filename' for reading.

• Coff file 'filename' could not read file header.

• Coff file 'filename' could not read optional file header.

• Coff file 'filename' missing optional file header.

• Coff file 'filename' could not read string table length.

• Coff file 'filename' could not read string table.

• Coff file 'filename' could not read symbol table.

• Coff file 'filename' could not read section header.

• Coff file 'filename' could not read raw data.

• Coff file 'filename' could not read line numbers.

• Coff file 'filename' could not read relocation info.

• Could not open Coff file 'filename' for writing.

• Coff file 'filename' could not write file header.

• Coff file 'filename' could not write optional file header.

• Coff file 'filename' could not write section header.
 1997 Microchip Technology Inc. DS33014F - page 123

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_D.frm Page 124 Thursday, October 9, 1997 9:02 AM
• Coff file 'filename' could not write raw data.

• Coff file 'filename' could not write reloc.

• Coff file 'filename' could not write lineinfo.

• Coff file 'filename' could not write symbol.

• Coff file 'filename' could not write string table length.

• Coff file 'filename' could not write string.

COFF To COD Converter Errors
Coff file ’filename’ must contain at least one ’code’ or ’romdata’ section.
In order to convert a COFF file to a COD file, the COFF file must have either a
code or a romdata section.

Could not open list file ’filename’ for writing. Verify that if 'filename' exists
and that it is not a read-only file.

COFF To COD Converter Warnings
Could not open source file ’filename’. This file will not be present in the
list file. The referenced source file could not be opened. This can happen if
an input object/library module was built on a machine with a different directory
structure. If source level debugging for the file is desired, rebuild the object or
library on the current machine.
DS33014F - page 124  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 125 Thursday, October 9, 1997 9:02 AM
Appendix E. Quick Reference
The following Quick Reference Guide gives all the instructions, directives, and
command line options for the Microchip MPASM Assembler.

Table E.1 MPASM Directive Language Summary

Directive Description Syntax

CONTROL DIRECTIVES

CONSTANT Declare Symbol Constant constant <label> [= <expr>,
...,<label> [= <expr>]]

#DEFINE Define a Text Substitution Label #define <name>
[[(<arg>,...,<arg>)]<value>]

END End Program Block end

EQU Define an Assembly Constant <label> equ <expr>

ERROR Issue an Error Message error "<text_string>"

ERRORLEVEL Set Messge Level errorlevel 0|1|2|<+-><msg>

INCLUDE Include Additional Source File include <<include_file>>
include "<include_file>"

LIST Listing Options list [<option>[,...,<option>]]

MESSG Create User Defined Message messg "<message_text>"

NOLIST Turn off Listing Output nolist

ORG Set Program Origin <label> org <expr>

PAGE Insert Listing Page Eject page

PROCESSOR Set Processor Type processor <processsor_type>

RADIX Specify Default Radix radix <default_radix>
 1997 Microchip Technology Inc. DS33014F - page 125

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 126 Thursday, October 9, 1997 9:02 AM
SET Define an Assembler Variable <label> set <expr>

SPACE Insert Blank Listing Lines space [<expr>]

SUBTITLE Specify Program Subtitle subtitl "<sub_text>"

TITLE Specify Program Title title "<title_text>"

#UNDEFINE Delete a Substitution Label #undefine <label>

VARIABLE Declare Symbol Variable variable <label> [= <expr>,...,
<label> [= <expr>]]

CONDITIONAL ASSEMBLY

ELSE Begin Alternative Assembly Block to IF else

ENDIF End Conditional Assembly Block endif

ENDW End a While Loop endw

IF Begin Conditionally Assembled Code
Block

if <expr>

IFDEF Execute If Symbol is Defined ifdef <label>

IFNDEF Execute If Symbol is Not Defined ifndef <label>

WHILE Perform Loop While Condition is True while <expr>

DATA

CBLOCK Define a Block of Constants cblock [<expr>]

_ _CONFIG Set configuration fuses _ _ config<expr>

DATA Create Numeric and Text Data data <expr>,[,<expr>,...,<expr>]
data "<text_string>"[,"<text_string>",...]

DB Declare Data of One Byte db <expr>[,<expr>,...,<expr>]

DE Declare EEPROM Data de <expr>[,<expr>,...,<expr>]

DT Define Table dt <expr>[,<expr>,...,<expr>]

DW Declare Data of One Word dw <expr> [,<expr>,...,<expr>]

ENDC End an Automatic Constant Block endc

FILL Specify Memory Fill Value fill <expr>, <count>

_ _ IDLOCS Set ID locations _ _idlocs <expr>

RES Reserve Memory res <mem_units>

Table E.1 MPASM Directive Language Summary (Continued)

Directive Description Syntax
DS33014F - page 126  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 127 Thursday, October 9, 1997 9:02 AM
MACROS

ENDM End a Macro Definition endm

EXITM Exit from a Macro exitm

EXPAND Expand Macro Listing expand

LOCAL Declare Local Macro Variable local <label> [,<label>]

MACRO Declare Macro Definition <label> macro [<arg>,...,<arg>]

NOEXPAND Turn off Macro Expansion noexpand

OBJECT FILE DIRECTIVES

BANKISEL Generate RAM bank selecting code for
indirect addressing

bankisel <label>

BANKSEL Generate RAM bank selecting code banksel <label>

CODE Begins executable code section [<name>] code [<address>]

EXTERN Declares an external label extern <label> [,<label>]

GLOBAL Exports a defined label extern <label> [.<label>]

IDATA Begins initialized data section [<name>] idata [<address>]

PAGESEL Generate ROM page selecting code pagesel <label>

UDATA Begins uninitialized data section [<name>] udata [<address>]

UDATA_OVR Begins overlayed uninitialized data
section

[<name>] udata_ovr [<address>]

UDATA_SHR Begins shared uninitialized data
section

[<name>] udata_shr [<address>]

Table E.1 MPASM Directive Language Summary (Continued)

Directive Description Syntax
 1997 Microchip Technology Inc. DS33014F - page 127

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 128 Thursday, October 9, 1997 9:02 AM
Table E.2 MPASM Command Line Options

Option Default Description

? N/A Displays the MPASM Help Panel

a INHX8M Generate absolute .COD and hex output directly from assembler:
/a<hex-format>
where <hex-format> is one of [INHX8M | INHX8S | INHX32]

c On Enables/Disables case sensitivity

d N/A Define a text string substitution: /d<label>[=<value>]

e On enable/disable/ set path for error file
/e Enable
/e + Enable
/e - Disable
/e <path>error.file Enables/sets path

h N/A Displays the MPASM Help Panel

l On Enable/disable/ set path for list file
/l Enable
/l + Enable
/l - Disable
/l <path>list.file Enables/sets path

m On Enable/Disable macro expansion

o Off Enable/disable/ set path for object file
/o Enable
/o + Enable
/o - Disable
/o <path>object.file Enables/sets path

p None Set the processor type:
/p<processor_type>
Where <processor_type> is a member of the PICmicro MCU family.
For example, PIC16C54.

q Off Enable/Disable Quiet Mode (suppress screen output)

r Hex Defines default radix:
/r<radix>
where <radix> is one of [HEX | DEC | OCT]

t 8 Set list file tab size

w 0 Set message level: /w<value>
Where <value> is:
0: all messages
1: errors and warnings
2: errors

x Off enable/disable/ set path for cross reference file
/x Enable
/x + Enable
/x - Disable
/x <path>xref.file Enables/sets path
DS33014F - page 128  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 129 Thursday, October 9, 1997 9:02 AM
Table E.3 Radix Types Supported

Radix Syntax Example

Decimal D’<digits>’ D’100’

Hexadecimal (default) H’<hex_digits>’ H’9f’

Octal O’<octal_digits>’ O’777’

Binary B’<binary_digits>’ B’00111001’

Character ’<character>’
A’<Character>’

’C’
A’C’
 1997 Microchip Technology Inc. DS33014F - page 129

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 130 Thursday, October 9, 1997 9:02 AM
Table E.4 MPASM Arithmetic Operators

Operator Description Example

$ Current program counter goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a - b)

– Complement flags = -flags

- Negation (2’s complement) -1 * Length

high Return high byte movlw high CTR_Table

low Return low byte movlw low CTR_Table

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift val = flags << 1

>> Right shift val = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

!= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG

^= Exclusive OR, set equal flags ^= ERROR_FLAG

++ Increment i ++

- - Decrement i --
DS33014F - page 130  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 131 Thursday, October 9, 1997 9:02 AM
Key to PICmicro Family Instruction Sets

PIC16C5X Instruction Set
The PIC16C5X, Microchip’s base-line 8-bit microcontroller family, uses a
12-bit wide instruction set. All instructions execute in a single instruction cycle
unless otherwise noted. Any unused opcode is executed as a NOP. The
instruction set is grouped into the following catagories:

Field Description

b Bit address within an 8 bit file register

d Destination select; d = 0 Store result in W (f0A).
d = 1 Store result in file register f.

Default is d = 1.

f Register file address (0x00 to 0xFF)

k Literal field, constant data or label

W Working register (accumulator)

x Don’t care location

i Table pointer control; i = 0 Do not change.
i = 1 Increment after instruction execution.

p Peripheral register file address (0x00 to 0x1f)

t Table byte select; t = 0 Perform operation on lower byte.
t = 1 Perform operation on upper byte.

PH:PL Multiplication results registers

Table E.5 PIC16C5X Literal and Control Operations

Hex Mnemonic Description Function

Ekk ANDLW k AND literal and W k .AND. W → W

9kk CALL k Call subroutine PC + 1 → TOS, k → PC
004 CLRWDT Clear watchdog timer 0 → WDT (and Prescaler if

assigned)

Akk GOTO k Goto address (k is nine bits) k → PC(9 bits)
Dkk IORLW k Incl. OR literal and W k .OR. W → W

Ckk MOVLW k Move Literal to W k → W

002 OPTION Load OPTION Register W → OPTION Register

8kk RETLW k Return with literal in W k → W, TOS → PC

003 SLEEP Go into Standby Mode 0 → WDT, stop oscillator

00f TRIS f Tristate port f W → I/O control reg f

Fkk XORLW k Exclusive OR literal and W k .XOR. W → W
 1997 Microchip Technology Inc. DS33014F - page 131

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 132 Thursday, October 9, 1997 9:02 AM
Table E.6 PIC16C5X Byte Oriented File Register Operations

Hex Mnemonic Description Function

1Cf ADDWF f,d Add W and f W + f → d
14f ANDWF f,d AND W and f W .AND. f → d

06f CLRF f Clear f 0 → f
040 CLRW Clear W 0 → W

24f COMF f,d Complement f .NOT. f → d

0Cf DECF f,d Decrement f f - 1 → d

2Cf DECFSZ f,d Decrement f, skip if zero f - 1 → d, skip if zero

28f INCF f,d Increment f f + 1 → d

3Cf INCFSZ f,d Increment f, skip if zero f + 1 → d,skip if zero
10f IORWF f,d Inclusive OR W and f W .OR. f → d

20f MOVF f,d Move f f → d

02f MOVWF f Move W to f W → f

000 NOP No operation

34f RLF f,d Rotate left f

30f RRF f,d Rotate right f

08f SUBWF f,d Subtract W from f f - W → d
38f SWAPF f,d Swap halves f f(0:3) ↔ f(4:7) → d
18f XORWF f,d Exclusive OR W and f W .XOR. f → d

Table E.7 PIC16C5X Bit Oriented File Register Operations

Hex Mnemonic Description Function

4bf BCF f,b Bit clear f 0 → f(b)

5bf BSF f,b Bit set f 1 → f(b)

6bf BTFSC f,b Bit test, skip if clear skip if f(b) = 0

7bf BTFSS f,b Bit test, skip if set skip if f(b) = 1

7......0C

register f

7......0C

register f
DS33014F - page 132  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 133 Thursday, October 9, 1997 9:02 AM
PIC16CXX Instruction Set
The PIC16CXX, Microchip’s mid-range 8-bit microcontroller family, uses a
14-bit wide instruction set. The PIC16CXX instruction set consists of 36
instructions, each a single 14-bit wide word. Most instructions operate on a
file register, f, and the working register, W (accumulator). The result can be
directed either to the file register or the W register or to both in the case of
some instructions. A few instructions operate solely on a file register (BSF for
example). The instruction set is grouped into the following catagories:

Table E.8 PIC16CXX Literal and Control Operations

Hex Mnemonic Description Function

3Ekk ADDLW k Add literal to W k + W → W

39kk ANDLW k AND literal and W k .AND. W → W

2kkk CALL k Call subroutine PC + 1 → TOS, k → PC

0064 CLRWDT T Clear watchdog timer 0 → WDT (and Prescaler if
assigned)

2kkk GOTO k Goto address (k is nine bits) k → PC(9 bits)

38kk IORLW k Incl. OR literal and W k .OR. W → W

30kk MOVLW k Move Literal to W k → W

0062 OPTION Load OPTION register W → OPTION Register

0009 RETFIE Return from Interrupt TOS → PC, 1 → GIE

34kk RETLW k Return with literal in W k → W, TOS → PC

0008 RETURN Return from subroutine TOS → PC

0063 SLEEP Go into Standby Mode 0 → WDT, stop oscillator

3Ckk SUBLW k Subtract W from literal k - W → W

006f TRIS f Tristate port f W → I/O control reg f

3Akk XORLW k Exclusive OR literal and W k .XOR. W → W

Table E.9 PIC16CXX Byte Oriented File Register Operations

Hex Mnemonic Description Function

07ff ADDWF f,d Add W and f W + f → d

05ff ANDWF f,d AND W and f W .AND. f → d

018f CLRF f Clear f 0 → f

0100 CLRW Clear W 0 → W

09ff COMF f,d Complement f .NOT. f → d

03ff DECF f,d Decrement f f - 1 → d

0Bff DECFSZ f,d Decrement f, skip if zero f - 1 → d, skip if 0

0Aff INCF f,d Increment f f + 1 → d
 1997 Microchip Technology Inc. DS33014F - page 133

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 134 Thursday, October 9, 1997 9:02 AM
0Fff INCFSZ f,d Increment f, skip if zero f + 1 → d, skip if 0

04ff IORWF f,d Inclusive OR W and f W .OR. f → d

08ff MOVF f,d Move f f → d
008f MOVWF f Move W to f W → f

0000 NOP No operation

0Dff RLF f,d Rotate left f

0Cff RRF f,d Rotate right f

02ff SUBWF f,d Subtract W from f f - W → d

0Eff SWAPF f,d Swap halves f f(0:3) ↔ f(4:7) → d
06ff XORWF f,d Exclusive OR W and f W .XOR. f → d

Table E.10 PIC16CXX Bit Oriented File Register Operations

Hex Mnemonic Description Function

1bff BCF f,b Bit clear f 0 → f(b)

1bff BSF f,b Bit set f 1 → f(b)
1bff BTFSC f,b Bit test, skip if clear skip if f(b) = 0

1bff BTFSS f,b Bit test, skip if set skip if f(b) = 1

Table E.11 PIC16C5X/PIC16CXX Special Instruction Mnemonics

Mnemonic Description
Equivalent

Operation(s)
Status

ADDCF f,d Add Carry to File BTFSC
INCF

3,0
f,d

Z

ADDDCF f,d Add Digit Carry to File BTFSC
INCF

3,1
f,d

Z

B k Branch GOTO k -

BC k Branch on Carry BTFSC
GOTO

3,0
k

-

BDC k Branch on Digit Carry BTFSC
GOTO

3,1
k

-

Table E.9 PIC16CXX Byte Oriented File Register Operations

Hex Mnemonic Description Function

7..... .0C

register f

7..... .0C

register f
DS33014F - page 134  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 135 Thursday, October 9, 1997 9:02 AM
BNC k Branch on No Carry BTFSS
GOTO

3,0
k

-

BNDC k Branch on No Digit Carry BTFSS
GOTO

3,1
k

-

BNZ k Branch on No Zero BTFSS
GOTO

3,2
k

-

BZ k Branch on Zero BTFSC
GOTO

3,2
k

-

CLRC Clear Carry BCF 3,0 -

CLRDC Clear Digit Carry BCF 3,1 -

CLRZ Clear Zero BCF 3,2 -

LCALL k

LGOTO k

MOVFW f Move File to W MOVF f,0 Z

NEGF f,d Negate File COMF
INCF

f,1
f,d

Z

SETC Set Carry BSF 3,0 -

SETDC Set Digit Carry BSF 3,1 -

SETZ Set Zero BSF 3,2 -

SKPC Skip on Carry BTFSS 3,0 -

SKPDC Skip on Digit Carry BTFSS 3,1 -

SKPNC Skip on No Carry BTFSC 3,0 -

SKPNDC Skip on No Digit Carry BTFSC 3,1 -

SKPNZ Skip on Non Zero BTFSC 3,2 -

SKPZ Skip on Zero BTFSS 3,2 -

SUBCF f,d Subtract Carry from File BTFSC
DECF

3,0
f,d

Z

SUBDCF f,d Subtract Digit Carry from File BTFSC
DECF

3,1
f,d

Z

TSTF f Test File MOVF f,1 Z

Table E.11 PIC16C5X/PIC16CXX Special Instruction Mnemonics

Mnemonic Description
Equivalent

Operation(s)
Status
 1997 Microchip Technology Inc. DS33014F - page 135

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 136 Thursday, October 9, 1997 9:02 AM
PIC17CXX Instruction Set
The PIC17CXX, Microchip’s high-performance 8-bit microcontroller family,
uses a 16-bit wide instruction set. The PIC17CXX instruction set consists of
55 instructions, each a single 16-bit wide word. Most instructions operate on a
file register, f, and the working register, W (accumulator). The result can be
directed either to the file register or the W register or to both in the case of
some instructions. Some devices in this family also include hardware multiply
instructions. A few instructions operate solely on a file register (BSF for
example).

Table E.12 PIC17CXX Data Movement Instructions

Hex Mnemonic Description Function

6pff MOVFP f,p Move f to p f → p

b8kk MOVLB k Move literal to BSR k → BSR (3:0)

bakx MOVLP k Move literal to RAM page select k → BSR (7:4)

4pff MOVPF p,f Move p to f p → W

01ff MOVWF f Move W to F W → f

a8ff TABLRD t,i,f Read data from table latch into file f,
then update table latch with 16-bit
contents of memory location
addressed by table pointer

TBLATH → f if t=1,
TBLATL → f if t=0;
ProgMem(TBLPTR) → TBLAT;
TBLPTR + 1 → TBLPTR if i=1

acff TABLWT t,i,f Write data from file f to table latch
and then write 16-bit table latch to
program memory location
addressed by table pointer

f → TBLATH if t = 1,
f → TBLATL if t = 0;
TBLAT → ProgMem(TBLPTR);
TBLPTR + 1 → TBLPTR if i=1

a0ff TLRD t,f Read data from table latch into file f
(table latch unchanged)

TBLATH → f if t = 1
TBLATL → f if t = 0

a4ff TLWT t,f Write data from file f into table latch f → TBLATH if t = 1
f → TBLATL if t = 0

Table E.13 PIC17CXX Arithmetic and Logical Instruction

Hex Mnemonic Description Function

b1kk ADDLW k Add literal to W (W + k) → W

0eff ADDWF f,d Add W to F (W + f) → d

10ff ADDWFC f,d Add W and Carry to f (W + f + C) → d
DS33014F - page 136  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 137 Thursday, October 9, 1997 9:02 AM
b5kk ANDLW k AND Literal and W (W .AND. k) → W

0aff ANDWF f,d AND W with f (W .AND. f) → d

28ff CLRF f,d Clear f and Clear d 0x00 → f,0x00 → d

12ff COMF f,d Complement f .NOT. f → d

2eff DAW f,d Dec. adjust W, store in f,d W adjusted → f and d

06ff DECF f,d Decrement f (f - 1) → f and d

14ff INCF f,d Increment f (f + 1) → f and d
b3kk IORLW k Inclusive OR literal with W (W .OR. k) → W
08ff IORWF f,d Inclusive or W with f (W .OR. f) → d
b0kk MOVLW k Move literal to W k → W

bckk MULLW k Multiply literal and W (k x W) → PH:PL
34ff MULWF f Multiply W and f (W x f) → PH:PL
2cff NEGW f,d Negate W, store in f and d (W + 1) → f,(W + 1) → d
1aff RLCF f,d Rotate left through carry

22ff RLNCF f,d Rotate left (no carry)

18ff RRCF f,d Rotate right through carry

20ff RRNCF f,d Rotate right (no carry)

2aff SETF f,d Set f and Set d 0xff → f,0xff → d

b2kk SUBLW k Subtract W from literal (k - W) → W

04ff SUBWF f,d Subtract W from f (f - W) → d

02ff SUBWFB f,d Subtract from f with borrow (f - W - c) → d
1cff SWAPF f,d Swap f f(0:3) → d(4:7),

f(4:7) → d(0:3)

b4kk XORLW k Exclusive OR literal with W (W .XOR. k) → W
0cff XORWF f,d Exclusive OR W with f (W .XOR. f) → d

Table E.13 PIC17CXX Arithmetic and Logical Instruction (Continued)

Hex Mnemonic Description Function

7......0C

register f

7......0

register f

7......0C

register f

7......0

register f
 1997 Microchip Technology Inc. DS33014F - page 137

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 138 Thursday, October 9, 1997 9:02 AM
Table E.14 PIC17CXX Bit Handling Instructions

Hex Mnemonic Description Function

8bff BCF f,b Bit clear f 0 → f(b)

8bff BSF f,b Bit set f 1 → f(b)

9bff BTFSC f,b Bit test, skip if clear skip if f(b) = 0

9bff BTFSS f,b Bit test, skip if set skip if f(b) = 1

3bff BTG f,b Bit toggle f .NOT. f(b) → f(b)

Table E.15 PIC17CXX Program Control Instructions

Hex Mnemonic Description Function

ekkk CALL k Subroutine call (within 8k page) PC+1 → TOS,k → PC(12:0),
k(12:8) → PCLATH(4:0),
PC(15:13) → PCLATH(7:5)

31ff CPFSEQ f Compare f/w, skip if f = w f-W, skip if f = W

32ff CPFSGT f Compare f/w, skip if f > w f-W, skip if f > W

30ff CPFSLT f Compare f/w, skip if f< w f-W, skip if f < W

16ff DECFSZ f,d Decrement f, skip if 0 (f-1) → d, skip if 0

26ff DCFSNZ f,d Decrement f, skip if not 0 (f-1) → d, skip if not 0

ckkk GOTO k Unconditional branch (within 8k) k → PC(12:0)
k(12:8) → f3(4:0),
PC(15:13) → f3(7:5)

1eff INCFSZ f,d Increment f, skip if zero (f+1) → d, skip if 0

24ff INFSNZ f,d Increment f, skip if not zero (f+1) → d, skip if not 0

b7kk LCALL k Long Call (within 64k) (PC+1) → TOS; k → PCL,
(PCLATH)→ PCH

0005 RETFIE Return from interrupt, enable
interrupt

(f3) → PCH:k → PCL
0 → GLINTD

b6kk RETLW k Return with literal in W k → W, TOS → PC,
(f3 unchanged)

0002 RETURN Return from subroutine TOS → PC
(f3 unchanged)

33ff TSTFSZ f Test f, skip if zero skip if f = 0
DS33014F - page 138  1997 Microchip Technology Inc.

Appendix E. Quick Reference

33014F_0Book.book : 33014F_E.frm Page 139 Thursday, October 9, 1997 9:02 AM
Hexadecimal to Decimal Conversion

Using This Table: For each Hex digit, find the associated decimal value. Add
the numbers together. For example, Hex A38F converts to 41871 as follows:

Table E.16 PIC17CXX Special Control Instructions

Hex Mnemonic Description Function

0004 CLRWT Clear watchdog timer 0 → WDT,0→ WDT prescaler,
1 → PD, 1 → TO

0003 SLEEP Enter Sleep Mode Stop oscillator,power down, 0 → WDT,
0 → WDT Prescaler
1 → PD, 1 → TO

Byte Byte

Hex Dec Hex Dec Hex Dec Hex Dec

0 0 0 0 0 0 0 0

1 4096 1 256 1 16 1 1

2 8192 2 512 2 32 2 2

3 12288 3 768 3 48 3 3

4 16384 4 1024 4 64 4 4

5 20480 5 1280 5 80 5 5

6 24576 6 1536 6 96 6 6

7 28672 7 1792 7 112 7 7

8 32768 8 2048 8 128 8 8

9 36864 9 2304 9 144 9 9

A 40960 A 2560 A 160 A 10

B 45056 B 2816 B 176 B 11

C 49152 C 3072 C 192 C 12

D 53248 D 3328 D 208 D 13

E 57344 E 3584 E 224 E 14

F 61440 F 3840 F 240 F 15

Hex 1000’s Digit

40960 768 128

Hex 100’s Digit Hex 10’s Digit Hex 1’s Digit

15

Result

41871
Decimal+ + + =
 1997 Microchip Technology Inc. DS33014F - page 139

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_E.frm Page 140 Thursday, October 9, 1997 9:02 AM
ASCII Character Set

L
ea

st
 S

ig
ni

fi
ca

n
t

C
h

ar
ac

te
r

Most Significant Character

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
DS33014F - page 140  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 141 Thursday, October 9, 1997 9:02 AM
Appendix F. Example Initialization Code
Initialization Code
If the IDATA directive is used when generating an object module, the user
must provide code to perform the data initialization. The following two
examples may be used and modified as needed.

Initialization Code for the PIC16CXX
;***

;** PIC16Cxx MPASM Initialized Data Startup File, Version 0.01 **

;** (c) Copyright 1997 Microchip Technology **

;***

;---------------- Environment variables --------------------;

 VARIABLE TABLE_OFFSET = 0 ;Offset for reading from table of entries

;------------------------- Equates -------------------------;

;Register addresses

INDF equ 0x00

PCL equ 0x02

STATUS equ 0x03

FSR equ 0x04

PCLATH equ 0x0A

;Bits within registers

Z equ 0x02

C equ 0x00

IRP equ 0x07

;----------------External variables and labels--------------;

 EXTERN _cinit ;Start of const. data table

;---;

; COPY_ROM_WORD_TO_RAM ;

; ;

; Reads a 16-bit word stored in program memory as a pair of;

; retlw kk instructions and stores the word in data memory ;

; (low byte first). The macro also handles all paging and/or ;

; bank switching involved. ;

; ;

; Arguments: ;
 1997 Microchip Technology Inc. DS33014F - page 141

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 142 Thursday, October 9, 1997 9:02 AM
; RomAddr Source address in program memory. ;

; RamAddr Destination address in data memory. ;

;---;

COPY_ROM_WORD_TO_RAM MACRO RomAddr, RamAddr

 PAGESEL RomAddr ; Switch to correct ROM page,

 call RomAddr ; then read the low byte

 BANKSEL RamAddr ; Switch to correct RAM bank,

 movwf RamAddr ; then write the low byte

 call 1 + RomAddr ; Read the high byte from ROM

 movwf 1 + RamAddr ; and store it in RAM

 ENDM

;---;

;***;

VARIABLES UDATA_OVR

;---;

; Data used for copying const. data into RAM

;

; Note: All the locations in this section can be reused

; by user programs. This can be done by declaring

; a section with the same name and attribute:

; i.e.

; VARIABLES UDATA_OVER (in MPASM)

; or

; #pragma udata overlay VARIABLES (in MPLAB-C)

;---;

num_init RES 2 ;Number of entries in init table

init_entry_from_addr RES 2 ;ROM address to copy const. data from

init_entry_to_addr RES 2 ;RAM address to copy const. data to

init_entry_size RES 2 ;Number of bytes in each init.section

init_entry_index RES 2 ;Used to index through array of init. data

;---;

; **

_copy_idata_sec CODE

; **

; * Copy initialized data from ROM to RAM *

; **

;

DS33014F - page 142  1997 Microchip Technology Inc.

Appendix F. Example Initialization Code

33014F_0Book.book : 33014F_F.frm Page 143 Thursday, October 9, 1997 9:02 AM
; The values to be stored in initialized data are stored in

; program memory sections. The actual initialized variables are

; stored in data memory in a section defined by the IDATA directive

; in MPASM or automatically defined by MPLAB-C. There are ‘num_init’

; such sections in a program. The table below has an entry for each

; section. Each entry contains the starting address in program memory

; where the data is to be copied from, the starting address in data

; memory where the data is to be copied, and the number of bytes to copy.

; The startup code below walks the table, reading those starting

; addresses and counts, and copies the data from program to data memory.

;

;

; +============================+

; _cinit | num_init (low) |

; +----------------------------+

; | num_init (high) |

; +============================+

; | init_entry_from_addr (low) | IDATA (0)

; +----------------------------+

; | init_entry_from_addr (high)|

; +----------------------------+

; | init_entry_to_addr (low) |

; +----------------------------+

; | init_entry_to_addr (high) |

; +----------------------------+

; | init_entry_size (low) |

; +----------------------------+

; | init_entry_size (high) |

; +============================+

; | . | .

; . .

; | |

; +============================+

; | init_entry_from_addr (low) | IDATA (num_init - 1)

; +----------------------------+

; | init_entry_from_addr (high)|

; +----------------------------+

; | init_entry_to_addr (low) |

; +----------------------------+

; | init_entry_to_addr (high) |

; +----------------------------+

; | init_entry_size (low) |

; +----------------------------+

; | init_entry_size (high) |

; +============================+
 1997 Microchip Technology Inc. DS33014F - page 143

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 144 Thursday, October 9, 1997 9:02 AM
; Start of code that copies initialization

; data from program to data memory

copy_init_data

; First read the count of entries (_cinit)

COPY_ROM_WORD_TO_RAM _cinit, num_init

 TABLE_OFFSET = TABLE_OFFSET + 2

; For (num_init) do copy data for each initialization

; entry. Decrement ‘num_init’ every time and when it

; reaches 0 we are done copying initialization data

;

_loop_num_init

BANKSEL num_init

movf num_init, W

iorwf num_init+1, 0

btfss STATUS, Z ; If num_init is not down to 0,

goto _copy_init_sec ; then we have more sections to copy,

goto _end_copy_init_data ; otherwise, we’re done copying data.

; For a single initialization section, read the

; starting addresses in both program and data memory,

; as well as the number of bytes to copy.

;

_copy_init_sec

COPY_ROM_WORD_TO_RAM TABLE_OFFSET + _cinit, init_entry_from_addr

 TABLE_OFFSET = TABLE_OFFSET + 2 ;Increment by 2 since it’s a word

 COPY_ROM_WORD_TO_RAM TABLE_OFFSET + _cinit, init_entry_to_addr

 TABLE_OFFSET = TABLE_OFFSET + 2 ;Increment by 2 since it’s a word

COPY_ROM_WORD_TO_RAM TABLE_OFFSET + _cinit, init_entry_size

 TABLE_OFFSET = TABLE_OFFSET + 2 ;Increment by 2 since it’s a word

; Check ‘init_entry_size’. If it’s 0, then go

; to the next entry in the table (if it exits).

; If ‘init_entry_size’ is non-zero, then go ahead

; and copy the bytes.

;

_start_copying_data

 BANKSEL init_entry_size

 movf init_entry_size, W

 iorwf init_entry_size+1, W

 btfsc STATUS, Z

 goto _dec_num_init
DS33014F - page 144  1997 Microchip Technology Inc.

Appendix F. Example Initialization Code

33014F_0Book.book : 33014F_F.frm Page 145 Thursday, October 9, 1997 9:02 AM
; Set up the destination address for the data in the FSR so

; we are prepared to copy data using indirect addressing

 BANKSEL init_entry_to_addr

 movf init_entry_to_addr, W

 movwf FSR

; Read a single data byte by doing a long jump

; into the section in program memory

 goto _Dummy2

_Dummy1

 movf init_entry_from_addr+1, W

 movwf PCLATH

 movf init_entry_from_addr, W

 movwf PCL

_Dummy2

 call _Dummy1 ;Puts return address on stack

; Now write the data to RAM using indirect addressing

movf init_entry_to_addr+1, 1 ;Check if upper portion of

 btfss STATUS, Z ;address is non-zero. If so, then

 bsf STATUS, IRP ;set the IRP bit. Otherwise,

 bcf STATUS, IRP ;clear the IRP bit.

 movwf INDF

; After copying one entry we need to:

; 1. Increment the program memory (source) address

; 2. Increment the data memory (destination) address

; 3. Decrement the init_entry_size

 BANKSEL init_entry_from_addr

incf init_entry_from_addr,1

 btfsc STATUS, C

 incf init_entry_from_addr+1,1

 BANKSEL init_entry_to_addr ;Increment the address

incf init_entry_to_addr,1 ;_init_entry_to_addr

btfsc STATUS, C

 incf init_entry_to_addr+1,1

 BANKSEL init_entry_size ;Decrement the count

 movf init_entry_size,1 ;_init_entry_size

 btfsc STATUS, Z

 decf init_entry_size+1,1
 1997 Microchip Technology Inc. DS33014F - page 145

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 146 Thursday, October 9, 1997 9:02 AM
decf init_entry_size,1

goto _start_copying_data ;Back to do another section

_dec_num_init

 BANKSEL num_init

 movf num_init,1

 btfsc STATUS, Z

decf num_init+1,1

decf num_init, 1

 goto _loop_num_init

_end_copy_init_data ;We’re done copying initialized data

 return

; Must declare copy_init_data as GLOBAL to be able

; to call it from other assembly modules

 GLOBAL copy_init_data

 END
DS33014F - page 146  1997 Microchip Technology Inc.

Appendix F. Example Initialization Code

33014F_0Book.book : 33014F_F.frm Page 147 Thursday, October 9, 1997 9:02 AM
Initialization Code for the PIC17CXX
;***
;** PIC17Cxx MPASM Initialized Data Startup File, Version 0.01 **
;** (c) Copyright 1997 Microchip Technology **

;***

;------------------------ Equates --------------------------;

;Register addresses
INDF equ 0x00

PCL equ 0x02
STATUS equ 0x03
FSR equ 0x04

PCLATH equ 0x0A

;Bits within registers
Z equ 0x02

C equ 0x00

;----------------External variables and labels--------------;

 EXTERN _cinit ;Start of const. data table

;***;
VARIABLES UDATA_OVR

;---;
; Data used for copying const. data into RAM
;

; NOTE: ALL THE LOCATIONS IN THIS SECTION CAN BE REUSED
; BY USER PROGRAMS. THIS CAN BE DONE BY DECLARING

; A SECTION WITH THE SAME NAME AND ATTRIBUTE,
; i.e.
; VARIABLES UDATA_OVER (in MPASM)

; or
; #pragma udata overlay VARIABLES (in MPLAB-C)

;---;
num_init RES 2 ;Number of entries in init table

init_entry_from_addr RES 2 ;ROM address to copy const. data from
init_entry_to_addr RES 2 ;RAM address to copy const. data to
init_entry_size RES 2 ;Number of bytes in each init.section

save_tblptrl RES 1 ;These two variables preserve
save_tblptrh RES 1 ;the position of TBLTRL within the entry table

;---;

; **

_copy_idata_sec CODE PROGMEM_START
 1997 Microchip Technology Inc. DS33014F - page 147

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 148 Thursday, October 9, 1997 9:02 AM
; **

; * Copy initialized data from ROM to RAM *
; **
; The values to be stored in initialized data are stored in

; program memory sections. The actual initialized variables are
; stored in data memory in a section defined by the IDATA directive

; in MPASM or automatically defined by MPLAB-C. There are ‘num_init’
; such sections in a program. The table below has an entry for each

; section. Each entry contains the starting address in program memory
; where the data is to be copied from, the starting address in data
; memory where the data is to be copied, and the number of bytes to copy.

; The startup code below walks the table, reading those starting
; addresses and counts, and copies the data from program to data memory.

;
;

; +============================+
; _cinit | num_init (low) |
; +----------------------------+

; | num_init (high) |
; +============================+

; | init_entry_from_addr (low) | IDATA (0)
; +----------------------------+
; | init_entry_from_addr (high)|

; +----------------------------+
; | init_entry_to_addr (low) |

; +----------------------------+
; | init_entry_to_addr (high) |

; +----------------------------+
; | init_entry_size (low) |
; +----------------------------+

; | init_entry_size (high) |
; +============================+

; | . | .
; . .
; | |

; +============================+
; | init_entry_from_addr (low) | IDATA (num_init - 1)

; +----------------------------+
; | init_entry_from_addr (high)|

; +----------------------------+
; | init_entry_to_addr (low) |
; +----------------------------+

; | init_entry_to_addr (high) |
; +----------------------------+

; | init_entry_size (low) |
; +----------------------------+

; | init_entry_size (high) |
; +============================+
DS33014F - page 148  1997 Microchip Technology Inc.

Appendix F. Example Initialization Code

33014F_0Book.book : 33014F_F.frm Page 149 Thursday, October 9, 1997 9:02 AM
; Start of code that copies initialization

; data from program to data memory
copy_init_data

; First read the count of entries (_cinit)

 movlw HIGH _cinit
 movwf PCLATH
 CALL _cinit & 0x3FF

 BANKSEL num_init
 movwf num_init

 CALL (_cinit & 0x3FF) + 1
 movwf num_init+1

; For (num_init) do copy data for each initialization
; entry. Decrement ‘num_init’ every time and when it

; reaches 0 we are done copying initialization data
;

_loop_num_init
 BANKSEL num_init
 movf num_init, W

 iorwf num_init+1, 0
 btfss STATUS, Z ; If num_init is not down to 0,

 goto _copy_init_sec ; then we have more sections to copy,
 goto _end_copy_init_data ; otherwise, we’re done copying data.

; For a single initialization section, read the
; starting addresses in both program and data memory,

; as well as the number of bytes to copy.
;

_copy_init_sec
; Read ‘from’ address in program memory
 BANKSEL init_entry_from_addr

 tablrd 0, 1, init_entry_from_addr
 tlrd 0, init_entry_from_addr

 tlrd 1, init_entry_from_addr+1

; Read ‘to’ address in data memory
 BANKSEL init_entry_to_addr
 tablrd 0, 1, init_entry_to_addr

 tlrd 0, init_entry_to_addr
 tlrd 1, init_entry_to_addr+1

; Read ‘size’ of data to be copied in BYTES
 BANKSEL init_entry_size

 tablrd 0, 1, init_entry_size
 1997 Microchip Technology Inc. DS33014F - page 149

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 150 Thursday, October 9, 1997 9:02 AM
 tlrd 0, init_entry_size
 tlrd 1, init_entry_size+1

; We must save the position of TBLPTR since TBLPTR

;is used in copying the data as well.
 movfp TBLPTRL, WREG

 BANKSEL save_tblptrl
 movwf save_tblptrl
 movfp TBLPTRH, WREG

 BANKSEL save_tblptrh
 movwf save_tblptrh

; Setup TBLPTRH:TBLPTRL to point to the ROM section
;where the initialization values of the data are stored.

 BANKSEL init_entry_from_addr
 movfp init_entry_from_addr, WREG

 movwf TBLPTRL
 movfp init_entry_from_addr+1, WREG

 movwf TBLPTRH

; We must determine whether the data section is in

;the general purpose area of RAM or in the special
;function register (SFR) area. We do this by comparing

;the address with the register memory map. We then
;determine ;whether to alter the upper or lower nibble

;of the BSR register in preparation for copying the data.
;
 BANKSEL init_entry_to_addr

 movfp init_entry_to_addr, FSR0

; First we see if destination is GPR (>0x20)
 movlw 0x1f
 cpfslt init_entry_to_addr ; If it is < 0x1F continue testing,

 goto _init_sec_gpr ;otherwise it’s 0x20 or higher (GPR)

; It’s not GPR, let’s see if it’s SFR or unbanked between 0x18 and 0x1F
 movlw 0x18

 cpfslt init_entry_to_addr ;is it <=17 ?
 goto _start_copying_data ;No, it’s between 0x18 and 0x1F

;It’s <=17, let’s see if it is 0x00-0x0F or 0x10-0x17
 movlw 0x0F

 cpfsgt init_entry_to_addr
 goto _start_copying_data ; It’s between 0x00 and 0x0F, COPY!
DS33014F - page 150  1997 Microchip Technology Inc.

Appendix F. Example Initialization Code

33014F_0Book.book : 33014F_F.frm Page 151 Thursday, October 9, 1997 9:02 AM
;if we fall through it’s an SFR from 0x10-0x17

;OK, it’s an SFR that needs MOVLB-type of bank switching!
;First mask off low nibble of BSR

 movlw 0xF0
 andwf BSR,1 ;clear the low nibble

 movfp init_entry_to_addr+1, WREG ;Load high portion of address
 iorwf BSR,1 ;and paste high portion into BSR
 goto _start_copying_data

;Well, it’s a banked GPR needing MOVLR-type of bank switching!

_init_sec_gpr
;First mask off high nibble of BSR
 movlw 0x0F

 andwf BSR,1
 BANKSEL init_entry_to_addr+1

 swapf (init_entry_to_addr+1), WREG ;Bank addr.in hi nibble of WREG
 iorwf BSR,1

 goto _start_copying_data

;Loop for # of bytes to be copied

; Since on 17Cxx we store two bytes per word we must be careful

;if the number of bytes to be copied is odd. We cannot copy word by
;word or we may end up overwriting a byte in RAM that doesn’t belong

;to the initialized data section. We therefore must decrement and
;check the size for every low and high byte read from program memory.
;

_start_copying_data
 tablrd 0, 1, WREG

;*** Test ****
 movfp init_entry_size, WREG

 iorwf init_entry_size+1,0
 btfsc ALUSTA, Z

 goto _dec_num_init

;***** Copy low byte ****
 tlrd 0, WREG ;
 movfp WREG, INDF0 ;Low byte stored in RAM location

;*** Decrement ***

 decf init_entry_size,1
 btfss ALUSTA, C
 decf init_entry_size+1,1
 1997 Microchip Technology Inc. DS33014F - page 151

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_F.frm Page 152 Thursday, October 9, 1997 9:02 AM
;*** Test again ***
 movfp init_entry_size, WREG

 iorwf init_entry_size+1,0
 btfsc ALUSTA, Z

 goto _dec_num_init

;**** Copy high byte ****
 tlrd 1, WREG
 movfp WREG, INDF0

;*** Decrement ***

 decf init_entry_size,1
 btfss ALUSTA, C
 decf init_entry_size+1,1

 goto _start_copying_data

; Decrement the counter for the outermost loop (no. of init.secs.)

;
_dec_num_init
 decf num_init,1

 btfss ALUSTA,C
 decf num_init+1, 1

;Now restore TBLPTRH:TBLPTRL to point to table

 movfp save_tblptrl, WREG
 movwf TBLPTRL
 movfp save_tblptrh, WREG

 movwf TBLPTRH

;Then go back to the top to do the next section, if any
 goto _loop_num_init

;We’re done copying initialized data
_end_copy_init_data

 return

;Must declare it as GLOBAL to be able to call it from other assembly modules

 GLOBAL copy_init_data

 END
DS33014F - page 152  1997 Microchip Technology Inc.

MPASM USER’S GUIDE
with MPLINK and MPLIB

33014F_0Book.book : 33014F_0BookIX.fm Page 153 Thursday, October 9, 1997 9:02 AM
Index
Symbols
#DEFINE .. 32, 42, 54, 109, 112
#UNDEFINE42, 54

A
Arithmatic Operators 75, 130
Assemble 8

B
BADRAM26, 46, 115
BANKISEL26, 113
BANKSEL27, 61, 113
BBS 11

application notes 107
bug reports 107
Connecting to 106
errata sheets 107
Software Releases 107
source code 107
Special Interest Groups 107
Systems Information

and Upgrade
Hot Line 108

Using the 106

C
CALL 110
case sensitivity14, 18
CBLOCK22, 28, 35, 110
CODE 29
Command Line Interface 13, 14,

................................ 128
Comments 19
Compatibility 10
CONFIG 29
CONSTANT22, 30
cross reference file 15

D
DATA30, 72
DB ... 31
DE ... 31
Define 14
Directives 8
DT ... 32
DW33, 72
 1997 Microchip Technology Inc.
E
ELSE 33, 41, 42
END34
ENDC 28, 34, 112
ENDIF35, 41, 42, 111, 112
ENDM 35, 66, 69, 112
ENDW 35, 55
EQU 22, 36, 50, 110
ERROR36
error file14, 20, 22, 37, 109,

........................119, 123
ERRORLEVEL 37, 115
Escape Sequences73
EXITM 37, 66, 68, 112
EXPAND38
Expressions71
EXTERN38

F
File

cross reference 15, 16
error 14, 16
listing 14, 17
object14
source16

file extensions20
FILL39

G
GLOBAL39

H
Hex101
Hex File 8, 18, 44, 101
hex file format 14, 17, 20
HIGH111
High/Low76

I
IDATA40
IDLOCS 41, 111
IF 34, 41, 112
IFDEF 32, 42
IFNDEF42
INCLUDE43
Increment/Decrement76
Initialization...........................141
Instruction Sets131

PIC16C5X131
PIC16CXX133
PIC17CXX136
Special Instructions134

Internet
Connecting to Microchip

web site105
Internet Home Page11

L
Labels19
Library8
Link ..9
LIST 29, 41, 44, 115
listing37
listing file 9, 14, 17, 20, 21, 23, 38,

............... 44, 47, 51, 52
LOCAL 44, 68
Local Label66
LOW111

M
MACRO 14, 35, 45
Macro 9, 65
MAXRAM 26, 46, 115, 116
message level 15, 18, 37, 44
MESSG47
Migration Path3
Mnemonics 9, 19
MPASM14
MPASMWIN 14, 17, 109
MPLAB10
MPLIB8
MPLINK9

N
NOEXPAND 38, 47
NOLIST47

O
object file 9, 14, 17
Operands19
Operators71
ORG48
DS33014F - page 153

MPASM USER’S GUIDE with MPLINK and MPLIB

33014F_0Book.book : 33014F_0BookIX.fm Page 154 Thursday, October 9, 1997 9:02 AM
P
PAGE 48
PAGESEL48, 113
PC ... 9
PICmicro 9
PICSTART 10
Precedence 71
PRO MATE 10
PROCESSOR15, 29, 41, 49
Processor 16
processor 114
PROCESSOR directive 115

R
RADIX ... 10, 15, 18, 44, 49, 71,

74, 115
RELOCATABLE OBJECTS ... 57
RES 50

S
SET22, 30, 50, 54, 110
Shell 13, 14, 16
Software Releases 107

Intermediate Release ... 107
Production Release 108

Source Code 9
source file 20
SPACE 51
SUBTITLE 51

T
Text Strings 72
TITLE 51

U
UDATA52
UDATA_OVR52
UDATA_SHR53

V
VARIABLE 22, 30, 54

W
Warnings113
Warranty10
Web Site

connecting to105
file transfer105

WHILE 36, 55, 69, 112
WHILE-ENDW112
DS33014F - page 154  1997 Microchip Technology Inc.

 1997 Microchip Technology Inc. DS33014F - page 155

Index

Notes:

33014F_0Book.book : 33014F_0BookIX.fm Page 155 Thursday, October 9, 1997 9:02 AM

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or
warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks
of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

D33014F-page 156  1997 Microchip Technology Inc.

All rights reserved. © 1997, Microchip Technology Incorporated, USA. 10/97 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7200 Fax: 602-786-7277
Technical Support: 602 786-7627
Web: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972-991-7177 Fax: 972-991-8588

Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714-263-1888 Fax: 714-263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
RM 3801B, Tower Two
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431

India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-559-9840

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700
Fax: 86 21-6275-5060

Singapore
Microchip Technology Taiwan
Singapore Branch
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2-717-7175 Fax: 886-2-545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44-1628-851077 Fax: 44-1628-850259

France
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Müchen, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-6899939 Fax: 39-39-6899883

JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

9/24/97

WORLDWIDE SALES & SERVICE

33014F_0Book.book : 33014F_z.frm Page 156 Thursday, October 9, 1997 9:02 AM

	Preface
	Welcome
	Feature List and Product Information
	Migration Path

	Part 1 – MPASM
	Chapter 1. Introduction
	Product Definition
	Using MPASM
	Documentation Layout
	Terms
	Recommended Reading
	System Requirements
	Warranty Registration
	Installation
	Compatibility Issues
	Customer Support

	Chapter 2. Environment and Usage
	Introduction
	Highlights
	Terms
	Command Line Interface
	DOS Shell Interface
	Windows Shell Interface
	Source Code Formats
	Files Used by MPASM and Utility Functions
	Hex File Formats
	Listing File Format
	Error File Format (.ERR)

	Chapter 3. Directive Language
	Introduction
	Highlights
	Terms
	Directive Details
	_ _BADRAM – Identify Unimplemented RAM
	BANKISEL – Generate Indirect Bank Selecting Code
	BANKSEL – Generate Bank Selecting Code
	CBLOCK – Define a Block of Constants
	CODE – Begin an Object File Code Section
	_ _CONFIG – Set Processor Configuration Bits
	CONSTANT – Declare Symbol Constant
	DATA – Create Numeric and Text Data
	DB – Declare Data of One Byte
	DE – Declare EEPROM Data Byte
	#DEFINE – Define a Text Substitution Label
	DT – Define Table
	DW – Declare Data of One Word
	ELSE – Begin Alternative Assembly Block to IF
	END – End Program Block
	ENDC – End an Automatic Constant Block
	ENDIF – End Conditional Assembly Block
	ENDM – End a Macro Definition
	ENDW – End a While Loop
	EQU – Define an Assembler Constant
	ERROR – Issue an Error Message
	ERRORLEVEL – Set Message Level
	EXITM – Exit from a Macro
	EXPAND – Expand Macro Listing
	EXTERN – Declare an Externally Defined Label
	FILL – Specify Memory Fill Value
	GLOBAL – Export a Label
	IDATA – Begin an Object File Initialized Data Sect...
	_ _IDLOCS – Set Processor ID Locations
	IF – Begin Conditionally Assembled Code Block
	IFDEF – Execute If Symbol has Been Defined
	IFNDEF – Execute If Symbol has not Been Defined
	INCLUDE – Include Additional Source File
	LIST – Listing Options
	LOCAL – Declare Local Macro Variable
	MACRO – Declare Macro Definition
	_ _MAXRAM – Define Maximum RAM Location
	MESSG – Create User Defined Message
	NOEXPAND – Turn off Macro Expansion
	NOLIST – Turn off Listing Output
	ORG – Set Program Origin
	PAGE – Insert Listing Page Eject
	PAGESEL – Generate Page Selecting Code
	PROCESSOR – Set Processor Type
	RADIX – Specify Default Radix
	RES – Reserve Memory
	SET – Define an Assembler Variable
	SPACE – Insert Blank Listing Lines
	SUBTITLE – Specify Program Subtitle
	TITLE – Specify Program Title
	UDATA – Begin an Object File Uninitialized Data Se...
	UDATA_OVR – Begin an Object File Overlayed Uniniti...
	UDATA_SHR – Begin an Object File Shared Uninitiali...
	#UNDEFINE – Delete a Substitution Label
	VARIABLE – Declare Symbol Variable
	WHILE – Perform Loop While Condition is True

	Chapter 4. Using MPASM to Create Relocatable Objec...
	Introduction
	Highlights
	Header Files
	Program Memory
	Instruction Operands
	RAM Allocation
	Configuration Bits and ID Locations
	Accessing Labels From Other Modules
	Paging and Banking Issues
	Unavailable Directives
	Generating the Object Module
	Example

	Chapter 5. Macro Language
	Introduction
	Highlights
	Terms
	Macro Syntax
	Macro Directives
	Text Substitution
	Macro Usage
	Examples

	Chapter 6. Expression Syntax and Operation
	Introduction
	Highlights
	Terms
	Text Strings
	Numeric Constants and Radix
	High/Low
	Increment/Decrement

	Part 2 – MPLINK
	Chapter 1. Introduction
	MPLINK Preview
	Product Description
	File Formats
	Linker Components
	Tools and Supported Platforms

	Chapter 2. Usage
	Command Line
	Usage Example

	Chapter 3. Command File
	Directives
	Linker Command File Example:

	Chapter 4. Linker Map File
	Linker Map File

	Chapter 5. Linker Processing
	Linker Allocation Algorithm
	Relocation Example
	Initialized Data

	Chapter 6. Terminology
	Terminology

	Part 3 – MPLIB
	Chapter 1. Librarian Fundamentals
	Usage
	Usage Examples
	Tips
	Error Reporting
	Introduction
	Highlights
	Hex File Formats
	Introduction
	Connecting to the Microchip Internet Web Site
	Connecting to the Microchip BBS
	Using the Bulletin Board
	Software Releases
	Systems Information and Upgrade Hot Line
	Errors
	Warnings
	Messages
	Parse Errors
	Linker Errors
	Library File Errors
	COFF File Errors
	COFF To COD Converter Errors
	COFF To COD Converter Warnings
	Key to PICmicro Family Instruction Sets
	PIC16C5X Instruction Set
	PIC16CXX Instruction Set
	PIC17CXX Instruction Set
	Hexadecimal to Decimal Conversion
	ASCII Character Set
	Initialization Code
	Initialization Code for the PIC16CXX
	Initialization Code for the PIC17CXX

	Appendices
	Index

